|
@@ -10,6 +10,7 @@ import torchvision.utils as vutils
|
|
from tensorboardX import SummaryWriter
|
|
from tensorboardX import SummaryWriter
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
class ModelGraphVisualizer():
|
|
class ModelGraphVisualizer():
|
|
def __init__(self):
|
|
def __init__(self):
|
|
return
|
|
return
|
|
@@ -26,10 +27,10 @@ class ModelHistogramVisualizer():
|
|
def __init__(self):
|
|
def __init__(self):
|
|
return
|
|
return
|
|
|
|
|
|
- def write_tensorboard_histograms(self, model:nn.Module, iter_count:int, tbwriter:SummaryWriter, name:str='model'):
|
|
|
|
|
|
+ def write_tensorboard_histograms(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model'):
|
|
try:
|
|
try:
|
|
for param_name, param in model.named_parameters():
|
|
for param_name, param in model.named_parameters():
|
|
- tbwriter.add_histogram(name + '/weights/' + param_name, param, iter_count)
|
|
|
|
|
|
+ tbwriter.add_histogram(name + '/weights/' + param_name, param, iteration)
|
|
except Exception as e:
|
|
except Exception as e:
|
|
print(("Failed to update histogram for model: {0}").format(e))
|
|
print(("Failed to update histogram for model: {0}").format(e))
|
|
|
|
|
|
@@ -38,7 +39,7 @@ class ModelStatsVisualizer():
|
|
def __init__(self):
|
|
def __init__(self):
|
|
return
|
|
return
|
|
|
|
|
|
- def write_tensorboard_stats(self, model:nn.Module, iter_count:int, tbwriter:SummaryWriter, name:str='model'):
|
|
|
|
|
|
+ def write_tensorboard_stats(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model_stats'):
|
|
try:
|
|
try:
|
|
gradients = [x.grad for x in model.parameters() if x.grad is not None]
|
|
gradients = [x.grad for x in model.parameters() if x.grad is not None]
|
|
gradient_nps = [to_np(x.data) for x in gradients]
|
|
gradient_nps = [to_np(x.data) for x in gradients]
|
|
@@ -47,45 +48,45 @@ class ModelStatsVisualizer():
|
|
return
|
|
return
|
|
|
|
|
|
avg_norm = sum(x.data.norm() for x in gradients)/len(gradients)
|
|
avg_norm = sum(x.data.norm() for x in gradients)/len(gradients)
|
|
- tbwriter.add_scalar(name + '/gradients/avg_norm', avg_norm, iter_count)
|
|
|
|
|
|
+ tbwriter.add_scalar(name + '/gradients/avg_norm', avg_norm, iteration)
|
|
|
|
|
|
median_norm = statistics.median(x.data.norm() for x in gradients)
|
|
median_norm = statistics.median(x.data.norm() for x in gradients)
|
|
- tbwriter.add_scalar(name + '/gradients/median_norm', median_norm, iter_count)
|
|
|
|
|
|
+ tbwriter.add_scalar(name + '/gradients/median_norm', median_norm, iteration)
|
|
|
|
|
|
max_norm = max(x.data.norm() for x in gradients)
|
|
max_norm = max(x.data.norm() for x in gradients)
|
|
- tbwriter.add_scalar(name + '/gradients/max_norm', max_norm, iter_count)
|
|
|
|
|
|
+ tbwriter.add_scalar(name + '/gradients/max_norm', max_norm, iteration)
|
|
|
|
|
|
min_norm = min(x.data.norm() for x in gradients)
|
|
min_norm = min(x.data.norm() for x in gradients)
|
|
- tbwriter.add_scalar(name + '/gradients/min_norm', min_norm, iter_count)
|
|
|
|
|
|
+ tbwriter.add_scalar(name + '/gradients/min_norm', min_norm, iteration)
|
|
|
|
|
|
num_zeros = sum((np.asarray(x)==0.0).sum() for x in gradient_nps)
|
|
num_zeros = sum((np.asarray(x)==0.0).sum() for x in gradient_nps)
|
|
- tbwriter.add_scalar(name + '/gradients/num_zeros', num_zeros, iter_count)
|
|
|
|
|
|
+ tbwriter.add_scalar(name + '/gradients/num_zeros', num_zeros, iteration)
|
|
|
|
|
|
|
|
|
|
avg_gradient= sum(x.data.mean() for x in gradients)/len(gradients)
|
|
avg_gradient= sum(x.data.mean() for x in gradients)/len(gradients)
|
|
- tbwriter.add_scalar(name + '/gradients/avg_gradient', avg_gradient, iter_count)
|
|
|
|
|
|
+ tbwriter.add_scalar(name + '/gradients/avg_gradient', avg_gradient, iteration)
|
|
|
|
|
|
median_gradient = statistics.median(x.data.median() for x in gradients)
|
|
median_gradient = statistics.median(x.data.median() for x in gradients)
|
|
- tbwriter.add_scalar(name + '/gradients/median_gradient', median_gradient, iter_count)
|
|
|
|
|
|
+ tbwriter.add_scalar(name + '/gradients/median_gradient', median_gradient, iteration)
|
|
|
|
|
|
max_gradient = max(x.data.max() for x in gradients)
|
|
max_gradient = max(x.data.max() for x in gradients)
|
|
- tbwriter.add_scalar(name + '/gradients/max_gradient', max_gradient, iter_count)
|
|
|
|
|
|
+ tbwriter.add_scalar(name + '/gradients/max_gradient', max_gradient, iteration)
|
|
|
|
|
|
min_gradient = min(x.data.min() for x in gradients)
|
|
min_gradient = min(x.data.min() for x in gradients)
|
|
- tbwriter.add_scalar(name + '/gradients/min_gradient', min_gradient, iter_count)
|
|
|
|
|
|
+ tbwriter.add_scalar(name + '/gradients/min_gradient', min_gradient, iteration)
|
|
except Exception as e:
|
|
except Exception as e:
|
|
print(("Failed to update tensorboard stats for model: {0}").format(e))
|
|
print(("Failed to update tensorboard stats for model: {0}").format(e))
|
|
|
|
|
|
class ImageGenVisualizer():
|
|
class ImageGenVisualizer():
|
|
- def output_image_gen_visuals(self, learn:Learner, trn_batch:Tuple, val_batch:Tuple, iter_count:int, tbwriter:SummaryWriter):
|
|
|
|
- self._output_visuals(learn=learn, batch=val_batch, iter_count=iter_count, tbwriter=tbwriter, ds_type=DatasetType.Valid)
|
|
|
|
- self._output_visuals(learn=learn, batch=trn_batch, iter_count=iter_count, tbwriter=tbwriter, ds_type=DatasetType.Train)
|
|
|
|
|
|
+ def output_image_gen_visuals(self, learn:Learner, trn_batch:Tuple, val_batch:Tuple, iteration:int, tbwriter:SummaryWriter):
|
|
|
|
+ self._output_visuals(learn=learn, batch=val_batch, iteration=iteration, tbwriter=tbwriter, ds_type=DatasetType.Valid)
|
|
|
|
+ self._output_visuals(learn=learn, batch=trn_batch, iteration=iteration, tbwriter=tbwriter, ds_type=DatasetType.Train)
|
|
|
|
|
|
- def _output_visuals(self, learn:Learner, batch:Tuple, iter_count:int, tbwriter:SummaryWriter, ds_type: DatasetType):
|
|
|
|
|
|
+ def _output_visuals(self, learn:Learner, batch:Tuple, iteration:int, tbwriter:SummaryWriter, ds_type: DatasetType):
|
|
image_sets = ModelImageSet.get_list_from_model(learn=learn, batch=batch, ds_type=ds_type)
|
|
image_sets = ModelImageSet.get_list_from_model(learn=learn, batch=batch, ds_type=ds_type)
|
|
- self._write_tensorboard_images(image_sets=image_sets, iter_count=iter_count, tbwriter=tbwriter, ds_type=ds_type)
|
|
|
|
|
|
+ self._write_tensorboard_images(image_sets=image_sets, iteration=iteration, tbwriter=tbwriter, ds_type=ds_type)
|
|
|
|
|
|
- def _write_tensorboard_images(self, image_sets:[ModelImageSet], iter_count:int, tbwriter:SummaryWriter, ds_type: DatasetType):
|
|
|
|
|
|
+ def _write_tensorboard_images(self, image_sets:[ModelImageSet], iteration:int, tbwriter:SummaryWriter, ds_type: DatasetType):
|
|
try:
|
|
try:
|
|
orig_images = []
|
|
orig_images = []
|
|
gen_images = []
|
|
gen_images = []
|
|
@@ -98,17 +99,15 @@ class ImageGenVisualizer():
|
|
|
|
|
|
prefix = str(ds_type)
|
|
prefix = str(ds_type)
|
|
|
|
|
|
- tbwriter.add_image(prefix + ' orig images', vutils.make_grid(orig_images, normalize=True), iter_count)
|
|
|
|
- tbwriter.add_image(prefix + ' gen images', vutils.make_grid(gen_images, normalize=True), iter_count)
|
|
|
|
- tbwriter.add_image(prefix + ' real images', vutils.make_grid(real_images, normalize=True), iter_count)
|
|
|
|
|
|
+ tbwriter.add_image(prefix + ' orig images', vutils.make_grid(orig_images, normalize=True), iteration)
|
|
|
|
+ tbwriter.add_image(prefix + ' gen images', vutils.make_grid(gen_images, normalize=True), iteration)
|
|
|
|
+ tbwriter.add_image(prefix + ' real images', vutils.make_grid(real_images, normalize=True), iteration)
|
|
except Exception as e:
|
|
except Exception as e:
|
|
print(("Failed to update tensorboard images for model: {0}").format(e))
|
|
print(("Failed to update tensorboard images for model: {0}").format(e))
|
|
|
|
|
|
|
|
|
|
#--------Below are what you actually want ot use, in practice----------------#
|
|
#--------Below are what you actually want ot use, in practice----------------#
|
|
|
|
|
|
-
|
|
|
|
-
|
|
|
|
class LearnerTensorboardWriter(LearnerCallback):
|
|
class LearnerTensorboardWriter(LearnerCallback):
|
|
def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000, stats_iters:int=1000):
|
|
def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000, stats_iters:int=1000):
|
|
super().__init__(learn=learn)
|
|
super().__init__(learn=learn)
|
|
@@ -122,6 +121,7 @@ class LearnerTensorboardWriter(LearnerCallback):
|
|
self.weight_vis = ModelHistogramVisualizer()
|
|
self.weight_vis = ModelHistogramVisualizer()
|
|
self.model_vis = ModelStatsVisualizer()
|
|
self.model_vis = ModelStatsVisualizer()
|
|
self.data = None
|
|
self.data = None
|
|
|
|
+ self.metrics_root = '/metrics/'
|
|
|
|
|
|
def _update_batches_if_needed(self):
|
|
def _update_batches_if_needed(self):
|
|
#one_batch function is extremely slow. this is an optimization
|
|
#one_batch function is extremely slow. this is an optimization
|
|
@@ -133,35 +133,26 @@ class LearnerTensorboardWriter(LearnerCallback):
|
|
self.val_batch = self.learn.data.one_batch(DatasetType.Valid, detach=True, denorm=False, cpu=False)
|
|
self.val_batch = self.learn.data.one_batch(DatasetType.Valid, detach=True, denorm=False, cpu=False)
|
|
|
|
|
|
def _write_model_stats(self, iteration):
|
|
def _write_model_stats(self, iteration):
|
|
- self.model_vis.write_tensorboard_stats(model=self.learn.model, iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
+ self.model_vis.write_tensorboard_stats(model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
def _write_training_loss(self, iteration, last_loss):
|
|
def _write_training_loss(self, iteration, last_loss):
|
|
trn_loss = to_np(last_loss)
|
|
trn_loss = to_np(last_loss)
|
|
- self.tbwriter.add_scalar('/loss/trn_loss', trn_loss, iteration)
|
|
|
|
|
|
+ self.tbwriter.add_scalar(self.metrics_root + 'train_loss', trn_loss, iteration)
|
|
|
|
|
|
def _write_weight_histograms(self, iteration):
|
|
def _write_weight_histograms(self, iteration):
|
|
- self.weight_vis.write_tensorboard_histograms(model=self.learn.model, iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
+ self.weight_vis.write_tensorboard_histograms(model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
- def _write_val_loss(self, iteration, last_metrics):
|
|
|
|
- #TODO: Not a fan of this indexing but...what to do?
|
|
|
|
- val_loss = last_metrics[0]
|
|
|
|
- self.tbwriter.add_scalar('/loss/val_loss', val_loss, iteration)
|
|
|
|
-
|
|
|
|
- def _write_metrics(self, iteration):
|
|
|
|
- rec = self.learn.recorder
|
|
|
|
|
|
|
|
- for i, name in enumerate(rec.names[3:]):
|
|
|
|
- if len(rec.metrics) == 0: continue
|
|
|
|
- if len(rec.metrics[-1:]) == 0: continue
|
|
|
|
- if len(rec.metrics[-1:][0]) == 0: continue
|
|
|
|
- value = rec.metrics[-1:][0][i]
|
|
|
|
- if value is None: continue
|
|
|
|
- self.tbwriter.add_scalar('/metrics/' + name, to_np(value), iteration)
|
|
|
|
|
|
+ def _write_metrics(self, iteration, last_metrics, start_idx:int=2):
|
|
|
|
+ recorder = self.learn.recorder
|
|
|
|
|
|
|
|
+ for i, name in enumerate(recorder.names[start_idx:]):
|
|
|
|
+ if len(last_metrics) < i+1: return
|
|
|
|
+ value = last_metrics[i]
|
|
|
|
+ self.tbwriter.add_scalar(self.metrics_root + name, value, iteration)
|
|
|
|
+
|
|
def on_batch_end(self, last_loss, metrics, iteration, **kwargs):
|
|
def on_batch_end(self, last_loss, metrics, iteration, **kwargs):
|
|
- if iteration==0:
|
|
|
|
- return
|
|
|
|
-
|
|
|
|
|
|
+ if iteration==0: return
|
|
self._update_batches_if_needed()
|
|
self._update_batches_if_needed()
|
|
|
|
|
|
if iteration % self.loss_iters == 0:
|
|
if iteration % self.loss_iters == 0:
|
|
@@ -174,8 +165,7 @@ class LearnerTensorboardWriter(LearnerCallback):
|
|
self._write_model_stats(iteration)
|
|
self._write_model_stats(iteration)
|
|
|
|
|
|
def on_epoch_end(self, metrics, last_metrics, iteration, **kwargs):
|
|
def on_epoch_end(self, metrics, last_metrics, iteration, **kwargs):
|
|
- self._write_val_loss(iteration, last_metrics)
|
|
|
|
- self._write_metrics(iteration)
|
|
|
|
|
|
+ self._write_metrics(iteration, last_metrics)
|
|
|
|
|
|
|
|
|
|
class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
@@ -186,59 +176,34 @@ class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
self.visual_iters = visual_iters
|
|
self.visual_iters = visual_iters
|
|
self.img_gen_vis = ImageGenVisualizer()
|
|
self.img_gen_vis = ImageGenVisualizer()
|
|
|
|
|
|
- #override
|
|
|
|
- def _write_training_loss(self, iteration, last_loss):
|
|
|
|
- trainer = self.learn.gan_trainer
|
|
|
|
- recorder = trainer.recorder
|
|
|
|
-
|
|
|
|
- if len(recorder.losses) > 0:
|
|
|
|
- trn_loss = to_np((recorder.losses[-1:])[0])
|
|
|
|
- self.tbwriter.add_scalar('/loss/trn_loss', trn_loss, iteration)
|
|
|
|
-
|
|
|
|
#override
|
|
#override
|
|
def _write_weight_histograms(self, iteration):
|
|
def _write_weight_histograms(self, iteration):
|
|
trainer = self.learn.gan_trainer
|
|
trainer = self.learn.gan_trainer
|
|
generator = trainer.generator
|
|
generator = trainer.generator
|
|
critic = trainer.critic
|
|
critic = trainer.critic
|
|
-
|
|
|
|
- self.weight_vis.write_tensorboard_histograms(model=generator, iter_count=iteration, tbwriter=self.tbwriter, name='generator')
|
|
|
|
- self.weight_vis.write_tensorboard_histograms(model=critic, iter_count=iteration, tbwriter=self.tbwriter, name='critic')
|
|
|
|
|
|
+ self.weight_vis.write_tensorboard_histograms(model=generator, iteration=iteration, tbwriter=self.tbwriter, name='generator')
|
|
|
|
+ self.weight_vis.write_tensorboard_histograms(model=critic, iteration=iteration, tbwriter=self.tbwriter, name='critic')
|
|
|
|
|
|
#override
|
|
#override
|
|
def _write_model_stats(self, iteration):
|
|
def _write_model_stats(self, iteration):
|
|
trainer = self.learn.gan_trainer
|
|
trainer = self.learn.gan_trainer
|
|
generator = trainer.generator
|
|
generator = trainer.generator
|
|
critic = trainer.critic
|
|
critic = trainer.critic
|
|
-
|
|
|
|
- self.model_vis.write_tensorboard_stats(model=generator, iter_count=iteration, tbwriter=self.tbwriter, name='generator')
|
|
|
|
- self.model_vis.write_tensorboard_stats(model=critic, iter_count=iteration, tbwriter=self.tbwriter, name='critic')
|
|
|
|
-
|
|
|
|
- #override
|
|
|
|
- def _write_val_loss(self, iteration, last_metrics):
|
|
|
|
- trainer = self.learn.gan_trainer
|
|
|
|
- recorder = trainer.recorder
|
|
|
|
-
|
|
|
|
- if len(recorder.val_losses) > 0:
|
|
|
|
- val_loss = (recorder.val_losses[-1:])[0]
|
|
|
|
- self.tbwriter.add_scalar('/loss/val_loss', val_loss, iteration)
|
|
|
|
-
|
|
|
|
|
|
+ self.model_vis.write_tensorboard_stats(model=generator, iteration=iteration, tbwriter=self.tbwriter, name='gen_model_stats')
|
|
|
|
+ self.model_vis.write_tensorboard_stats(model=critic, iteration=iteration, tbwriter=self.tbwriter, name='crit_model_stats')
|
|
|
|
|
|
def _write_images(self, iteration):
|
|
def _write_images(self, iteration):
|
|
trainer = self.learn.gan_trainer
|
|
trainer = self.learn.gan_trainer
|
|
recorder = trainer.recorder
|
|
recorder = trainer.recorder
|
|
-
|
|
|
|
gen_mode = trainer.gen_mode
|
|
gen_mode = trainer.gen_mode
|
|
trainer.switch(gen_mode=True)
|
|
trainer.switch(gen_mode=True)
|
|
self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
- iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
+ iteration=iteration, tbwriter=self.tbwriter)
|
|
trainer.switch(gen_mode=gen_mode)
|
|
trainer.switch(gen_mode=gen_mode)
|
|
|
|
|
|
def on_batch_end(self, metrics, iteration, **kwargs):
|
|
def on_batch_end(self, metrics, iteration, **kwargs):
|
|
super().on_batch_end(metrics=metrics, iteration=iteration, **kwargs)
|
|
super().on_batch_end(metrics=metrics, iteration=iteration, **kwargs)
|
|
-
|
|
|
|
- if iteration==0:
|
|
|
|
- return
|
|
|
|
-
|
|
|
|
|
|
+ if iteration==0: return
|
|
if iteration % self.visual_iters == 0:
|
|
if iteration % self.visual_iters == 0:
|
|
self._write_images(iteration)
|
|
self._write_images(iteration)
|
|
|
|
|
|
@@ -254,7 +219,7 @@ class ImageGenTensorboardWriter(LearnerTensorboardWriter):
|
|
|
|
|
|
def _write_images(self, iteration):
|
|
def _write_images(self, iteration):
|
|
self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
- iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
+ iteration=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
def on_batch_end(self, metrics, iteration, **kwargs):
|
|
def on_batch_end(self, metrics, iteration, **kwargs):
|
|
super().on_batch_end(metrics=metrics, iteration=iteration, **kwargs)
|
|
super().on_batch_end(metrics=metrics, iteration=iteration, **kwargs)
|