|
@@ -5,7 +5,7 @@ from fastai.vision import Image
|
|
from fastai.callbacks import LearnerCallback
|
|
from fastai.callbacks import LearnerCallback
|
|
from fastai.core import *
|
|
from fastai.core import *
|
|
from fastai.torch_core import *
|
|
from fastai.torch_core import *
|
|
-from threading import Thread
|
|
|
|
|
|
+from threading import Thread, Event
|
|
import time
|
|
import time
|
|
from time import sleep
|
|
from time import sleep
|
|
from queue import Queue
|
|
from queue import Queue
|
|
@@ -14,29 +14,57 @@ import torchvision.utils as vutils
|
|
from abc import ABC, abstractmethod
|
|
from abc import ABC, abstractmethod
|
|
from tensorboardX import SummaryWriter
|
|
from tensorboardX import SummaryWriter
|
|
|
|
|
|
-class AsyncTBWriter(ABC):
|
|
|
|
|
|
+
|
|
|
|
+class TBWriteRequest(ABC):
|
|
|
|
+ def __init__(self, tbwriter: SummaryWriter, iteration:int):
|
|
|
|
+ super().__init__()
|
|
|
|
+ self.tbwriter = tbwriter
|
|
|
|
+ self.iteration = iteration
|
|
|
|
+
|
|
|
|
+ @abstractmethod
|
|
|
|
+ def write(self):
|
|
|
|
+ pass
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+# SummaryWriter writes tend to block quite a bit. This gets around that and greatly boosts performance.
|
|
|
|
+# Not all tensorboard writes are using this- just the ones that take a long time. Note that the
|
|
|
|
+# SummaryWriter does actually use a threadsafe consumer/producer design ultimately to write to Tensorboard,
|
|
|
|
+# so writes done outside of this async loop should be fine.
|
|
|
|
+class AsyncTBWriter():
|
|
def __init__(self):
|
|
def __init__(self):
|
|
super().__init__()
|
|
super().__init__()
|
|
- self.exit = False
|
|
|
|
|
|
+ self.stoprequest = Event()
|
|
self.queue = Queue()
|
|
self.queue = Queue()
|
|
- self.thread = Thread(target=self._queue_processor)
|
|
|
|
|
|
+ self.thread = Thread(target=self._queue_processor, daemon=True)
|
|
self.thread.start()
|
|
self.thread.start()
|
|
|
|
|
|
|
|
+ def request_write(self, request: TBWriteRequest):
|
|
|
|
+ if self.stoprequest.isSet():
|
|
|
|
+ raise Exception('Close was already called! Cannot perform this operation.')
|
|
|
|
+ self.queue.put(request)
|
|
|
|
+
|
|
def _queue_processor(self):
|
|
def _queue_processor(self):
|
|
- while not self.exit:
|
|
|
|
|
|
+ while not self.stoprequest.isSet():
|
|
while not self.queue.empty():
|
|
while not self.queue.empty():
|
|
request = self.queue.get()
|
|
request = self.queue.get()
|
|
- self._write_async(request)
|
|
|
|
- sleep(0.1)
|
|
|
|
|
|
+ request.write()
|
|
|
|
+ sleep(0.2)
|
|
|
|
|
|
- @abstractmethod
|
|
|
|
- def _write_async(self, request):
|
|
|
|
|
|
+ #Provided this to stop thread explicitly or by context management (with statement) but thread should end on its own
|
|
|
|
+ # upon program exit, due to being a daemon. So using this is probably unecessary.
|
|
|
|
+ def close(self):
|
|
|
|
+ self.stoprequest.set()
|
|
|
|
+ self.thread.join()
|
|
|
|
+
|
|
|
|
+ def __enter__(self):
|
|
|
|
+ # Nothing to do, thread already started. Could start thread here to enforce use of context manager
|
|
|
|
+ # (but that sounds like a pain and a bit unweildy and unecessary for actual usage)
|
|
pass
|
|
pass
|
|
|
|
|
|
- def __del__(self):
|
|
|
|
- self.exit = True
|
|
|
|
- self.thread.join()
|
|
|
|
|
|
+ def __exit__(self, exc_type, exc_value, traceback):
|
|
|
|
+ self.close()
|
|
|
|
|
|
|
|
+asyncTBWriter = AsyncTBWriter()
|
|
|
|
|
|
class ModelImageSet():
|
|
class ModelImageSet():
|
|
@staticmethod
|
|
@staticmethod
|
|
@@ -58,144 +86,141 @@ class ModelImageSet():
|
|
self.real = real
|
|
self.real = real
|
|
self.gen = gen
|
|
self.gen = gen
|
|
|
|
|
|
-#TODO: There aren't any callbacks using this yet. Not sure if we want this included (not sure if it's useful, honestly)
|
|
|
|
-class ModelGraphTBWriter():
|
|
|
|
- def __init__(self):
|
|
|
|
- return
|
|
|
|
-
|
|
|
|
- def write_model_graph_to_tensorboard(self, md:DataBunch, model:nn.Module, tbwriter:SummaryWriter):
|
|
|
|
- x,y = md.one_batch(ds_type=DatasetType.Valid, detach=False, denorm=False)
|
|
|
|
- tbwriter.add_graph(model=model, input_to_model=x)
|
|
|
|
|
|
|
|
-class HistogramTBRequest():
|
|
|
|
|
|
+class HistogramTBRequest(TBWriteRequest):
|
|
def __init__(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str):
|
|
def __init__(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str):
|
|
- self.params = [(name, values.clone().detach()) for (name, values) in model.named_parameters()]
|
|
|
|
- self.iteration = iteration
|
|
|
|
- self.tbwriter = tbwriter
|
|
|
|
|
|
+ super().__init__(tbwriter=tbwriter, iteration=iteration)
|
|
|
|
+ self.params = [(name, values.clone().detach().cpu()) for (name, values) in model.named_parameters()]
|
|
self.name = name
|
|
self.name = name
|
|
|
|
|
|
-#If this isn't done async then this is sloooooow
|
|
|
|
-class HistogramTBWriter(AsyncTBWriter):
|
|
|
|
- def __init__(self):
|
|
|
|
- super().__init__()
|
|
|
|
-
|
|
|
|
# override
|
|
# override
|
|
- def _write_async(self, request:HistogramTBRequest):
|
|
|
|
|
|
+ def write(self):
|
|
try:
|
|
try:
|
|
- params = request.params
|
|
|
|
- iteration = request.iteration
|
|
|
|
- tbwriter = request.tbwriter
|
|
|
|
- name = request.name
|
|
|
|
-
|
|
|
|
- for param_name, values in params:
|
|
|
|
- tag = name + '/weights/' + param_name
|
|
|
|
- tbwriter.add_histogram(tag=tag, values=values, global_step=iteration)
|
|
|
|
|
|
+ for param_name, values in self.params:
|
|
|
|
+ tag = self.name + '/weights/' + param_name
|
|
|
|
+ self.tbwriter.add_histogram(tag=tag, values=values, global_step=self.iteration)
|
|
except Exception as e:
|
|
except Exception as e:
|
|
print(("Failed to write model histograms to Tensorboard: {0}").format(e))
|
|
print(("Failed to write model histograms to Tensorboard: {0}").format(e))
|
|
|
|
|
|
- def write_tensorboard_histograms(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model'):
|
|
|
|
- request = HistogramTBRequest(model, iteration, tbwriter, name)
|
|
|
|
- self.queue.put(request)
|
|
|
|
-
|
|
|
|
-#This is pretty speedy- Don't think we need async writes here
|
|
|
|
-class ModelStatsTBWriter():
|
|
|
|
|
|
+#If this isn't done async then this is sloooooow
|
|
|
|
+class HistogramTBWriter():
|
|
def __init__(self):
|
|
def __init__(self):
|
|
|
|
+ super().__init__()
|
|
|
|
+
|
|
|
|
+ def write(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model'):
|
|
|
|
+ request = HistogramTBRequest(model=model, iteration=iteration, tbwriter=tbwriter, name=name)
|
|
|
|
+ asyncTBWriter.request_write(request)
|
|
|
|
+
|
|
|
|
+class ModelStatsTBRequest(TBWriteRequest):
|
|
|
|
+ def __init__(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str):
|
|
|
|
+ super().__init__(tbwriter=tbwriter, iteration=iteration)
|
|
|
|
+ self.gradients = [x.grad.clone().detach().cpu() for x in model.parameters() if x.grad is not None]
|
|
|
|
+ self.name = name
|
|
self.gradients_root = '/gradients/'
|
|
self.gradients_root = '/gradients/'
|
|
|
|
|
|
- def write_tensorboard_stats(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model_stats'):
|
|
|
|
- gradients = [x.grad for x in model.parameters() if x.grad is not None]
|
|
|
|
- gradient_nps = [to_np(x.data) for x in gradients]
|
|
|
|
|
|
+ # override
|
|
|
|
+ def write(self):
|
|
|
|
+ try:
|
|
|
|
+ if len(self.gradients) == 0: return
|
|
|
|
+
|
|
|
|
+ gradient_nps = [to_np(x.data) for x in self.gradients]
|
|
|
|
+ avg_norm = sum(x.data.norm() for x in self.gradients)/len(self.gradients)
|
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
|
+ tag=self.name + self.gradients_root + 'avg_norm', scalar_value=avg_norm, global_step=self.iteration)
|
|
|
|
|
|
- if len(gradients) == 0: return
|
|
|
|
|
|
+ median_norm = statistics.median(x.data.norm() for x in self.gradients)
|
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
|
+ tag=self.name + self.gradients_root + 'median_norm', scalar_value=median_norm, global_step=self.iteration)
|
|
|
|
|
|
- avg_norm = sum(x.data.norm() for x in gradients)/len(gradients)
|
|
|
|
- tbwriter.add_scalar(
|
|
|
|
- tag=name + self.gradients_root + 'avg_norm', scalar_value=avg_norm, global_step=iteration)
|
|
|
|
|
|
+ max_norm = max(x.data.norm() for x in self.gradients)
|
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
|
+ tag=self.name + self.gradients_root + 'max_norm', scalar_value=max_norm, global_step=self.iteration)
|
|
|
|
|
|
- median_norm = statistics.median(x.data.norm() for x in gradients)
|
|
|
|
- tbwriter.add_scalar(
|
|
|
|
- tag=name + self.gradients_root + 'median_norm', scalar_value=median_norm, global_step=iteration)
|
|
|
|
|
|
+ min_norm = min(x.data.norm() for x in self.gradients)
|
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
|
+ tag=self.name + self.gradients_root + 'min_norm', scalar_value=min_norm, global_step=self.iteration)
|
|
|
|
|
|
- max_norm = max(x.data.norm() for x in gradients)
|
|
|
|
- tbwriter.add_scalar(
|
|
|
|
- tag=name + self.gradients_root + 'max_norm', scalar_value=max_norm, global_step=iteration)
|
|
|
|
|
|
+ num_zeros = sum((np.asarray(x) == 0.0).sum() for x in gradient_nps)
|
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
|
+ tag=self.name + self.gradients_root + 'num_zeros', scalar_value=num_zeros, global_step=self.iteration)
|
|
|
|
|
|
- min_norm = min(x.data.norm() for x in gradients)
|
|
|
|
- tbwriter.add_scalar(
|
|
|
|
- tag=name + self.gradients_root + 'min_norm', scalar_value=min_norm, global_step=iteration)
|
|
|
|
|
|
+ avg_gradient = sum(x.data.mean() for x in self.gradients)/len(self.gradients)
|
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
|
+ tag=self.name + self.gradients_root + 'avg_gradient', scalar_value=avg_gradient, global_step=self.iteration)
|
|
|
|
|
|
- num_zeros = sum((np.asarray(x) == 0.0).sum() for x in gradient_nps)
|
|
|
|
- tbwriter.add_scalar(
|
|
|
|
- tag=name + self.gradients_root + 'num_zeros', scalar_value=num_zeros, global_step=iteration)
|
|
|
|
|
|
+ median_gradient = statistics.median(x.data.median() for x in self.gradients)
|
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
|
+ tag=self.name + self.gradients_root + 'median_gradient', scalar_value=median_gradient, global_step=self.iteration)
|
|
|
|
|
|
- avg_gradient = sum(x.data.mean() for x in gradients)/len(gradients)
|
|
|
|
- tbwriter.add_scalar(
|
|
|
|
- tag=name + self.gradients_root + 'avg_gradient', scalar_value=avg_gradient, global_step=iteration)
|
|
|
|
|
|
+ max_gradient = max(x.data.max() for x in self.gradients)
|
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
|
+ tag=self.name + self.gradients_root + 'max_gradient', scalar_value=max_gradient, global_step=self.iteration)
|
|
|
|
|
|
- median_gradient = statistics.median(x.data.median() for x in gradients)
|
|
|
|
- tbwriter.add_scalar(
|
|
|
|
- tag=name + self.gradients_root + 'median_gradient', scalar_value=median_gradient, global_step=iteration)
|
|
|
|
|
|
+ min_gradient = min(x.data.min() for x in self.gradients)
|
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
|
+ tag=self.name + self.gradients_root + 'min_gradient', scalar_value=min_gradient, global_step=self.iteration)
|
|
|
|
+ except Exception as e:
|
|
|
|
+ print(("Failed to write model stats to Tensorboard: {0}").format(e))
|
|
|
|
|
|
- max_gradient = max(x.data.max() for x in gradients)
|
|
|
|
- tbwriter.add_scalar(
|
|
|
|
- tag=name + self.gradients_root + 'max_gradient', scalar_value=max_gradient, global_step=iteration)
|
|
|
|
|
|
|
|
- min_gradient = min(x.data.min() for x in gradients)
|
|
|
|
- tbwriter.add_scalar(
|
|
|
|
- tag=name + self.gradients_root + 'min_gradient', scalar_value=min_gradient, global_step=iteration)
|
|
|
|
|
|
+class ModelStatsTBWriter():
|
|
|
|
+ def write(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model_stats'):
|
|
|
|
+ request = ModelStatsTBRequest(model=model, iteration=iteration, tbwriter=tbwriter, name=name)
|
|
|
|
+ asyncTBWriter.request_write(request)
|
|
|
|
|
|
|
|
|
|
-class ImageTBRequest():
|
|
|
|
|
|
+class ImageTBRequest(TBWriteRequest):
|
|
def __init__(self, learn:Learner, batch:Tuple, iteration:int, tbwriter:SummaryWriter, ds_type:DatasetType):
|
|
def __init__(self, learn:Learner, batch:Tuple, iteration:int, tbwriter:SummaryWriter, ds_type:DatasetType):
|
|
|
|
+ super().__init__(tbwriter=tbwriter, iteration=iteration)
|
|
self.image_sets = ModelImageSet.get_list_from_model(learn=learn, batch=batch, ds_type=ds_type)
|
|
self.image_sets = ModelImageSet.get_list_from_model(learn=learn, batch=batch, ds_type=ds_type)
|
|
- self.iteration = iteration
|
|
|
|
- self.tbwriter = tbwriter
|
|
|
|
self.ds_type = ds_type
|
|
self.ds_type = ds_type
|
|
|
|
|
|
-#If this isn't done async then this is noticeably slower
|
|
|
|
-class ImageTBWriter(AsyncTBWriter):
|
|
|
|
- def __init__(self):
|
|
|
|
- super().__init__()
|
|
|
|
-
|
|
|
|
# override
|
|
# override
|
|
- def _write_async(self, request:ImageTBRequest):
|
|
|
|
|
|
+ def write(self):
|
|
try:
|
|
try:
|
|
orig_images = []
|
|
orig_images = []
|
|
gen_images = []
|
|
gen_images = []
|
|
real_images = []
|
|
real_images = []
|
|
|
|
|
|
- for image_set in request.image_sets:
|
|
|
|
|
|
+ for image_set in self.image_sets:
|
|
orig_images.append(image_set.orig.px)
|
|
orig_images.append(image_set.orig.px)
|
|
gen_images.append(image_set.gen.px)
|
|
gen_images.append(image_set.gen.px)
|
|
real_images.append(image_set.real.px)
|
|
real_images.append(image_set.real.px)
|
|
|
|
|
|
- prefix = request.ds_type.name
|
|
|
|
- tbwriter = request.tbwriter
|
|
|
|
- iteration = request.iteration
|
|
|
|
-
|
|
|
|
- tbwriter.add_image(
|
|
|
|
- tag=prefix + ' orig images', img_tensor=vutils.make_grid(orig_images, normalize=True), global_step=iteration)
|
|
|
|
- tbwriter.add_image(
|
|
|
|
- tag=prefix + ' gen images', img_tensor=vutils.make_grid(gen_images, normalize=True), global_step=iteration)
|
|
|
|
- tbwriter.add_image(
|
|
|
|
- tag=prefix + ' real images', img_tensor=vutils.make_grid(real_images, normalize=True), global_step=iteration)
|
|
|
|
|
|
+ prefix = self.ds_type.name
|
|
|
|
+
|
|
|
|
+ self.tbwriter.add_image(
|
|
|
|
+ tag=prefix + ' orig images', img_tensor=vutils.make_grid(orig_images, normalize=True),
|
|
|
|
+ global_step=self.iteration)
|
|
|
|
+ self.tbwriter.add_image(
|
|
|
|
+ tag=prefix + ' gen images', img_tensor=vutils.make_grid(gen_images, normalize=True),
|
|
|
|
+ global_step=self.iteration)
|
|
|
|
+ self.tbwriter.add_image(
|
|
|
|
+ tag=prefix + ' real images', img_tensor=vutils.make_grid(real_images, normalize=True),
|
|
|
|
+ global_step=self.iteration)
|
|
except Exception as e:
|
|
except Exception as e:
|
|
print(("Failed to write images to Tensorboard: {0}").format(e))
|
|
print(("Failed to write images to Tensorboard: {0}").format(e))
|
|
|
|
|
|
- def write_images(self, learn:Learner, trn_batch:Tuple, val_batch:Tuple, iteration:int, tbwriter:SummaryWriter):
|
|
|
|
- self._write_images_for_dstype(learn=learn, batch=val_batch, iteration=iteration,
|
|
|
|
|
|
+#If this isn't done async then this is noticeably slower
|
|
|
|
+class ImageTBWriter():
|
|
|
|
+ def __init__(self):
|
|
|
|
+ super().__init__()
|
|
|
|
+
|
|
|
|
+ def write(self, learn:Learner, trn_batch:Tuple, val_batch:Tuple, iteration:int, tbwriter:SummaryWriter):
|
|
|
|
+ self._write_for_dstype(learn=learn, batch=val_batch, iteration=iteration,
|
|
tbwriter=tbwriter, ds_type=DatasetType.Valid)
|
|
tbwriter=tbwriter, ds_type=DatasetType.Valid)
|
|
- self._write_images_for_dstype(learn=learn, batch=trn_batch, iteration=iteration,
|
|
|
|
|
|
+ self._write_for_dstype(learn=learn, batch=trn_batch, iteration=iteration,
|
|
tbwriter=tbwriter, ds_type=DatasetType.Train)
|
|
tbwriter=tbwriter, ds_type=DatasetType.Train)
|
|
|
|
|
|
- def _write_images_for_dstype(self, learn:Learner, batch:Tuple, iteration:int, tbwriter:SummaryWriter, ds_type:DatasetType):
|
|
|
|
|
|
+ def _write_for_dstype(self, learn:Learner, batch:Tuple, iteration:int, tbwriter:SummaryWriter, ds_type:DatasetType):
|
|
request = ImageTBRequest(learn=learn, batch=batch, iteration=iteration, tbwriter=tbwriter, ds_type=ds_type)
|
|
request = ImageTBRequest(learn=learn, batch=batch, iteration=iteration, tbwriter=tbwriter, ds_type=ds_type)
|
|
- self.queue.put(request)
|
|
|
|
|
|
+ asyncTBWriter.request_write(request)
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
#--------CALLBACKS----------------#
|
|
#--------CALLBACKS----------------#
|
|
class LearnerTensorboardWriter(LearnerCallback):
|
|
class LearnerTensorboardWriter(LearnerCallback):
|
|
- def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, hist_iters:int=1000, stats_iters:int=1000):
|
|
|
|
|
|
+ def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, hist_iters:int=500, stats_iters:int=100):
|
|
super().__init__(learn=learn)
|
|
super().__init__(learn=learn)
|
|
self.base_dir = base_dir
|
|
self.base_dir = base_dir
|
|
self.name = name
|
|
self.name = name
|
|
@@ -208,9 +233,12 @@ class LearnerTensorboardWriter(LearnerCallback):
|
|
self.stats_writer = ModelStatsTBWriter()
|
|
self.stats_writer = ModelStatsTBWriter()
|
|
self.data = None
|
|
self.data = None
|
|
self.metrics_root = '/metrics/'
|
|
self.metrics_root = '/metrics/'
|
|
|
|
+ self._update_batches_if_needed()
|
|
|
|
|
|
def _update_batches_if_needed(self):
|
|
def _update_batches_if_needed(self):
|
|
- # one_batch function is extremely slow. this is an optimization
|
|
|
|
|
|
+ # one_batch function is extremely slow with large datasets. This is an optimization.
|
|
|
|
+ # Note that also we want to always show the same batches so we can see changes
|
|
|
|
+ # in tensorboard
|
|
update_batches = self.data is not self.learn.data
|
|
update_batches = self.data is not self.learn.data
|
|
|
|
|
|
if update_batches:
|
|
if update_batches:
|
|
@@ -221,7 +249,7 @@ class LearnerTensorboardWriter(LearnerCallback):
|
|
ds_type=DatasetType.Valid, detach=True, denorm=False, cpu=False)
|
|
ds_type=DatasetType.Valid, detach=True, denorm=False, cpu=False)
|
|
|
|
|
|
def _write_model_stats(self, iteration:int):
|
|
def _write_model_stats(self, iteration:int):
|
|
- self.stats_writer.write_tensorboard_stats(
|
|
|
|
|
|
+ self.stats_writer.write(
|
|
model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
|
|
model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
def _write_training_loss(self, iteration:int, last_loss:Tensor):
|
|
def _write_training_loss(self, iteration:int, last_loss:Tensor):
|
|
@@ -230,7 +258,7 @@ class LearnerTensorboardWriter(LearnerCallback):
|
|
self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration)
|
|
self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration)
|
|
|
|
|
|
def _write_weight_histograms(self, iteration:int):
|
|
def _write_weight_histograms(self, iteration:int):
|
|
- self.hist_writer.write_tensorboard_histograms(
|
|
|
|
|
|
+ self.hist_writer.write(
|
|
model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
|
|
model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
#TODO: Relying on a specific hardcoded start_idx here isn't great. Is there a better solution?
|
|
#TODO: Relying on a specific hardcoded start_idx here isn't great. Is there a better solution?
|
|
@@ -266,8 +294,8 @@ class LearnerTensorboardWriter(LearnerCallback):
|
|
|
|
|
|
# TODO: We're overriding almost everything here. Seems like a good idea to question that ("is a" vs "has a")
|
|
# TODO: We're overriding almost everything here. Seems like a good idea to question that ("is a" vs "has a")
|
|
class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
- def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, hist_iters:int=1000,
|
|
|
|
- stats_iters:int=1000, visual_iters:int=100):
|
|
|
|
|
|
+ def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, hist_iters:int=500,
|
|
|
|
+ stats_iters:int=100, visual_iters:int=100):
|
|
super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters,
|
|
super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters,
|
|
hist_iters=hist_iters, stats_iters=stats_iters)
|
|
hist_iters=hist_iters, stats_iters=stats_iters)
|
|
self.visual_iters = visual_iters
|
|
self.visual_iters = visual_iters
|
|
@@ -280,9 +308,9 @@ class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
trainer = self.learn.gan_trainer
|
|
trainer = self.learn.gan_trainer
|
|
generator = trainer.generator
|
|
generator = trainer.generator
|
|
critic = trainer.critic
|
|
critic = trainer.critic
|
|
- self.hist_writer.write_tensorboard_histograms(
|
|
|
|
|
|
+ self.hist_writer.write(
|
|
model=generator, iteration=iteration, tbwriter=self.tbwriter, name='generator')
|
|
model=generator, iteration=iteration, tbwriter=self.tbwriter, name='generator')
|
|
- self.hist_writer.write_tensorboard_histograms(
|
|
|
|
|
|
+ self.hist_writer.write(
|
|
model=critic, iteration=iteration, tbwriter=self.tbwriter, name='critic')
|
|
model=critic, iteration=iteration, tbwriter=self.tbwriter, name='critic')
|
|
|
|
|
|
# override
|
|
# override
|
|
@@ -295,12 +323,12 @@ class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
gen_mode = trainer.gen_mode
|
|
gen_mode = trainer.gen_mode
|
|
|
|
|
|
if gen_mode and not self.gen_stats_updated:
|
|
if gen_mode and not self.gen_stats_updated:
|
|
- self.stats_writer.write_tensorboard_stats(
|
|
|
|
|
|
+ self.stats_writer.write(
|
|
model=generator, iteration=iteration, tbwriter=self.tbwriter, name='gen_model_stats')
|
|
model=generator, iteration=iteration, tbwriter=self.tbwriter, name='gen_model_stats')
|
|
self.gen_stats_updated = True
|
|
self.gen_stats_updated = True
|
|
|
|
|
|
if not gen_mode and not self.crit_stats_updated:
|
|
if not gen_mode and not self.crit_stats_updated:
|
|
- self.stats_writer.write_tensorboard_stats(
|
|
|
|
|
|
+ self.stats_writer.write(
|
|
model=critic, iteration=iteration, tbwriter=self.tbwriter, name='crit_model_stats')
|
|
model=critic, iteration=iteration, tbwriter=self.tbwriter, name='crit_model_stats')
|
|
self.crit_stats_updated = True
|
|
self.crit_stats_updated = True
|
|
|
|
|
|
@@ -314,14 +342,14 @@ class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
tag = self.metrics_root + 'train_loss'
|
|
tag = self.metrics_root + 'train_loss'
|
|
self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration)
|
|
self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration)
|
|
|
|
|
|
- def _write_images(self, iteration:int):
|
|
|
|
|
|
+ def _write(self, iteration:int):
|
|
trainer = self.learn.gan_trainer
|
|
trainer = self.learn.gan_trainer
|
|
#TODO: Switching gen_mode temporarily seems a bit hacky here. Certainly not a good side-effect. Is there a better way?
|
|
#TODO: Switching gen_mode temporarily seems a bit hacky here. Certainly not a good side-effect. Is there a better way?
|
|
gen_mode = trainer.gen_mode
|
|
gen_mode = trainer.gen_mode
|
|
|
|
|
|
try:
|
|
try:
|
|
trainer.switch(gen_mode=True)
|
|
trainer.switch(gen_mode=True)
|
|
- self.img_gen_vis.write_images(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
|
|
|
|
+ self.img_gen_vis.write(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
iteration=iteration, tbwriter=self.tbwriter)
|
|
iteration=iteration, tbwriter=self.tbwriter)
|
|
finally:
|
|
finally:
|
|
trainer.switch(gen_mode=gen_mode)
|
|
trainer.switch(gen_mode=gen_mode)
|
|
@@ -331,7 +359,7 @@ class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
super().on_batch_end(iteration=iteration, **kwargs)
|
|
super().on_batch_end(iteration=iteration, **kwargs)
|
|
if iteration == 0: return
|
|
if iteration == 0: return
|
|
if iteration % self.visual_iters == 0:
|
|
if iteration % self.visual_iters == 0:
|
|
- self._write_images(iteration=iteration)
|
|
|
|
|
|
+ self._write(iteration=iteration)
|
|
|
|
|
|
# override
|
|
# override
|
|
def on_backward_end(self, iteration:int, **kwargs):
|
|
def on_backward_end(self, iteration:int, **kwargs):
|
|
@@ -349,15 +377,15 @@ class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
|
|
|
|
|
|
|
|
class ImageGenTensorboardWriter(LearnerTensorboardWriter):
|
|
class ImageGenTensorboardWriter(LearnerTensorboardWriter):
|
|
- def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, hist_iters:int=1000,
|
|
|
|
- stats_iters: int = 1000, visual_iters: int = 100):
|
|
|
|
|
|
+ def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, hist_iters:int=500,
|
|
|
|
+ stats_iters: int = 100, visual_iters: int = 100):
|
|
super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters, hist_iters=hist_iters,
|
|
super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters, hist_iters=hist_iters,
|
|
stats_iters=stats_iters)
|
|
stats_iters=stats_iters)
|
|
self.visual_iters = visual_iters
|
|
self.visual_iters = visual_iters
|
|
self.img_gen_vis = ImageTBWriter()
|
|
self.img_gen_vis = ImageTBWriter()
|
|
|
|
|
|
- def _write_images(self, iteration:int):
|
|
|
|
- self.img_gen_vis.write_images(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
|
|
|
|
+ def _write(self, iteration:int):
|
|
|
|
+ self.img_gen_vis.write(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
iteration=iteration, tbwriter=self.tbwriter)
|
|
iteration=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
# override
|
|
# override
|
|
@@ -366,4 +394,4 @@ class ImageGenTensorboardWriter(LearnerTensorboardWriter):
|
|
if iteration == 0: return
|
|
if iteration == 0: return
|
|
|
|
|
|
if iteration % self.visual_iters == 0:
|
|
if iteration % self.visual_iters == 0:
|
|
- self._write_images(iteration=iteration)
|
|
|
|
|
|
+ self._write(iteration=iteration)
|