|
@@ -10,83 +10,100 @@ import torchvision.utils as vutils
|
|
|
from tensorboardX import SummaryWriter
|
|
|
|
|
|
|
|
|
-
|
|
|
class ModelGraphVisualizer():
|
|
|
def __init__(self):
|
|
|
- return
|
|
|
-
|
|
|
- def write_model_graph_to_tensorboard(self, md:DataBunch, model:nn.Module, tbwriter:SummaryWriter):
|
|
|
+ return
|
|
|
+
|
|
|
+ def write_model_graph_to_tensorboard(self, md: DataBunch, model: nn.Module, tbwriter: SummaryWriter):
|
|
|
try:
|
|
|
- x,y = md.one_batch(DatasetType.Valid, detach=False, denorm=False)
|
|
|
+ x, y = md.one_batch(DatasetType.Valid, detach=False, denorm=False)
|
|
|
tbwriter.add_graph(model, x)
|
|
|
except Exception as e:
|
|
|
print(("Failed to generate graph for model: {0}. Note that there's an outstanding issue with "
|
|
|
- + "scopes being addressed here: https://github.com/pytorch/pytorch/pull/12400").format(e))
|
|
|
+ + "scopes being addressed here: https://github.com/pytorch/pytorch/pull/12400").format(e))
|
|
|
+
|
|
|
|
|
|
class ModelHistogramVisualizer():
|
|
|
def __init__(self):
|
|
|
- return
|
|
|
+ return
|
|
|
|
|
|
- def write_tensorboard_histograms(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model'):
|
|
|
+ def write_tensorboard_histograms(self, model: nn.Module, iteration: int, tbwriter: SummaryWriter, name: str = 'model'):
|
|
|
try:
|
|
|
for param_name, param in model.named_parameters():
|
|
|
- tbwriter.add_histogram(name + '/weights/' + param_name, param, iteration)
|
|
|
+ tbwriter.add_histogram(
|
|
|
+ name + '/weights/' + param_name, param, iteration)
|
|
|
except Exception as e:
|
|
|
print(("Failed to update histogram for model: {0}").format(e))
|
|
|
|
|
|
|
|
|
-class ModelStatsVisualizer():
|
|
|
+class ModelStatsVisualizer():
|
|
|
def __init__(self):
|
|
|
- return
|
|
|
+ return
|
|
|
|
|
|
- def write_tensorboard_stats(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model_stats'):
|
|
|
+ def write_tensorboard_stats(self, model: nn.Module, iteration: int, tbwriter: SummaryWriter, name: str = 'model_stats'):
|
|
|
try:
|
|
|
- gradients = [x.grad for x in model.parameters() if x.grad is not None]
|
|
|
+ gradients = [x.grad for x in model.parameters()
|
|
|
+ if x.grad is not None]
|
|
|
gradient_nps = [to_np(x.data) for x in gradients]
|
|
|
-
|
|
|
+
|
|
|
if len(gradients) == 0:
|
|
|
- return
|
|
|
+ return
|
|
|
|
|
|
avg_norm = sum(x.data.norm() for x in gradients)/len(gradients)
|
|
|
- tbwriter.add_scalar(name + '/gradients/avg_norm', avg_norm, iteration)
|
|
|
+ tbwriter.add_scalar(
|
|
|
+ name + '/gradients/avg_norm', avg_norm, iteration)
|
|
|
|
|
|
median_norm = statistics.median(x.data.norm() for x in gradients)
|
|
|
- tbwriter.add_scalar(name + '/gradients/median_norm', median_norm, iteration)
|
|
|
+ tbwriter.add_scalar(
|
|
|
+ name + '/gradients/median_norm', median_norm, iteration)
|
|
|
|
|
|
max_norm = max(x.data.norm() for x in gradients)
|
|
|
- tbwriter.add_scalar(name + '/gradients/max_norm', max_norm, iteration)
|
|
|
+ tbwriter.add_scalar(
|
|
|
+ name + '/gradients/max_norm', max_norm, iteration)
|
|
|
|
|
|
min_norm = min(x.data.norm() for x in gradients)
|
|
|
- tbwriter.add_scalar(name + '/gradients/min_norm', min_norm, iteration)
|
|
|
+ tbwriter.add_scalar(
|
|
|
+ name + '/gradients/min_norm', min_norm, iteration)
|
|
|
|
|
|
- num_zeros = sum((np.asarray(x)==0.0).sum() for x in gradient_nps)
|
|
|
- tbwriter.add_scalar(name + '/gradients/num_zeros', num_zeros, iteration)
|
|
|
+ num_zeros = sum((np.asarray(x) == 0.0).sum() for x in gradient_nps)
|
|
|
+ tbwriter.add_scalar(
|
|
|
+ name + '/gradients/num_zeros', num_zeros, iteration)
|
|
|
|
|
|
+ avg_gradient = sum(x.data.mean() for x in gradients)/len(gradients)
|
|
|
+ tbwriter.add_scalar(
|
|
|
+ name + '/gradients/avg_gradient', avg_gradient, iteration)
|
|
|
|
|
|
- avg_gradient= sum(x.data.mean() for x in gradients)/len(gradients)
|
|
|
- tbwriter.add_scalar(name + '/gradients/avg_gradient', avg_gradient, iteration)
|
|
|
+ median_gradient = statistics.median(
|
|
|
+ x.data.median() for x in gradients)
|
|
|
+ tbwriter.add_scalar(
|
|
|
+ name + '/gradients/median_gradient', median_gradient, iteration)
|
|
|
|
|
|
- median_gradient = statistics.median(x.data.median() for x in gradients)
|
|
|
- tbwriter.add_scalar(name + '/gradients/median_gradient', median_gradient, iteration)
|
|
|
+ max_gradient = max(x.data.max() for x in gradients)
|
|
|
+ tbwriter.add_scalar(
|
|
|
+ name + '/gradients/max_gradient', max_gradient, iteration)
|
|
|
|
|
|
- max_gradient = max(x.data.max() for x in gradients)
|
|
|
- tbwriter.add_scalar(name + '/gradients/max_gradient', max_gradient, iteration)
|
|
|
-
|
|
|
- min_gradient = min(x.data.min() for x in gradients)
|
|
|
- tbwriter.add_scalar(name + '/gradients/min_gradient', min_gradient, iteration)
|
|
|
+ min_gradient = min(x.data.min() for x in gradients)
|
|
|
+ tbwriter.add_scalar(
|
|
|
+ name + '/gradients/min_gradient', min_gradient, iteration)
|
|
|
except Exception as e:
|
|
|
- print(("Failed to update tensorboard stats for model: {0}").format(e))
|
|
|
+ print(
|
|
|
+ ("Failed to update tensorboard stats for model: {0}").format(e))
|
|
|
+
|
|
|
|
|
|
class ImageGenVisualizer():
|
|
|
- def output_image_gen_visuals(self, learn:Learner, trn_batch:Tuple, val_batch:Tuple, iteration:int, tbwriter:SummaryWriter):
|
|
|
- self._output_visuals(learn=learn, batch=val_batch, iteration=iteration, tbwriter=tbwriter, ds_type=DatasetType.Valid)
|
|
|
- self._output_visuals(learn=learn, batch=trn_batch, iteration=iteration, tbwriter=tbwriter, ds_type=DatasetType.Train)
|
|
|
-
|
|
|
- def _output_visuals(self, learn:Learner, batch:Tuple, iteration:int, tbwriter:SummaryWriter, ds_type: DatasetType):
|
|
|
- image_sets = ModelImageSet.get_list_from_model(learn=learn, batch=batch, ds_type=ds_type)
|
|
|
- self._write_tensorboard_images(image_sets=image_sets, iteration=iteration, tbwriter=tbwriter, ds_type=ds_type)
|
|
|
-
|
|
|
- def _write_tensorboard_images(self, image_sets:[ModelImageSet], iteration:int, tbwriter:SummaryWriter, ds_type: DatasetType):
|
|
|
+ def output_image_gen_visuals(self, learn: Learner, trn_batch: Tuple, val_batch: Tuple, iteration: int, tbwriter: SummaryWriter):
|
|
|
+ self._output_visuals(learn=learn, batch=val_batch, iteration=iteration,
|
|
|
+ tbwriter=tbwriter, ds_type=DatasetType.Valid)
|
|
|
+ self._output_visuals(learn=learn, batch=trn_batch, iteration=iteration,
|
|
|
+ tbwriter=tbwriter, ds_type=DatasetType.Train)
|
|
|
+
|
|
|
+ def _output_visuals(self, learn: Learner, batch: Tuple, iteration: int, tbwriter: SummaryWriter, ds_type: DatasetType):
|
|
|
+ image_sets = ModelImageSet.get_list_from_model(
|
|
|
+ learn=learn, batch=batch, ds_type=ds_type)
|
|
|
+ self._write_tensorboard_images(
|
|
|
+ image_sets=image_sets, iteration=iteration, tbwriter=tbwriter, ds_type=ds_type)
|
|
|
+
|
|
|
+ def _write_tensorboard_images(self, image_sets: [ModelImageSet], iteration: int, tbwriter: SummaryWriter, ds_type: DatasetType):
|
|
|
try:
|
|
|
orig_images = []
|
|
|
gen_images = []
|
|
@@ -99,17 +116,21 @@ class ImageGenVisualizer():
|
|
|
|
|
|
prefix = str(ds_type)
|
|
|
|
|
|
- tbwriter.add_image(prefix + ' orig images', vutils.make_grid(orig_images, normalize=True), iteration)
|
|
|
- tbwriter.add_image(prefix + ' gen images', vutils.make_grid(gen_images, normalize=True), iteration)
|
|
|
- tbwriter.add_image(prefix + ' real images', vutils.make_grid(real_images, normalize=True), iteration)
|
|
|
+ tbwriter.add_image(
|
|
|
+ prefix + ' orig images', vutils.make_grid(orig_images, normalize=True), iteration)
|
|
|
+ tbwriter.add_image(
|
|
|
+ prefix + ' gen images', vutils.make_grid(gen_images, normalize=True), iteration)
|
|
|
+ tbwriter.add_image(
|
|
|
+ prefix + ' real images', vutils.make_grid(real_images, normalize=True), iteration)
|
|
|
except Exception as e:
|
|
|
- print(("Failed to update tensorboard images for model: {0}").format(e))
|
|
|
+ print(
|
|
|
+ ("Failed to update tensorboard images for model: {0}").format(e))
|
|
|
|
|
|
|
|
|
-#--------Below are what you actually want ot use, in practice----------------#
|
|
|
+#--------Below are what you actually want to use, in practice----------------#
|
|
|
|
|
|
class LearnerTensorboardWriter(LearnerCallback):
|
|
|
- def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000, stats_iters:int=1000):
|
|
|
+ def __init__(self, learn: Learner, base_dir: Path, name: str, loss_iters: int = 25, weight_iters: int = 1000, stats_iters: int = 1000):
|
|
|
super().__init__(learn=learn)
|
|
|
self.base_dir = base_dir
|
|
|
self.name = name
|
|
@@ -119,48 +140,61 @@ class LearnerTensorboardWriter(LearnerCallback):
|
|
|
self.weight_iters = weight_iters
|
|
|
self.stats_iters = stats_iters
|
|
|
self.weight_vis = ModelHistogramVisualizer()
|
|
|
- self.model_vis = ModelStatsVisualizer()
|
|
|
+ self.model_vis = ModelStatsVisualizer()
|
|
|
self.data = None
|
|
|
self.metrics_root = '/metrics/'
|
|
|
|
|
|
def _update_batches_if_needed(self):
|
|
|
- #one_batch function is extremely slow. this is an optimization
|
|
|
+ # one_batch function is extremely slow. this is an optimization
|
|
|
update_batches = self.data is not self.learn.data
|
|
|
|
|
|
if update_batches:
|
|
|
self.data = self.learn.data
|
|
|
- self.trn_batch = self.learn.data.one_batch(DatasetType.Train, detach=True, denorm=False, cpu=False)
|
|
|
- self.val_batch = self.learn.data.one_batch(DatasetType.Valid, detach=True, denorm=False, cpu=False)
|
|
|
+ self.trn_batch = self.learn.data.one_batch(
|
|
|
+ DatasetType.Train, detach=True, denorm=False, cpu=False)
|
|
|
+ self.val_batch = self.learn.data.one_batch(
|
|
|
+ DatasetType.Valid, detach=True, denorm=False, cpu=False)
|
|
|
|
|
|
def _write_model_stats(self, iteration):
|
|
|
- self.model_vis.write_tensorboard_stats(model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
|
|
|
+ self.model_vis.write_tensorboard_stats(
|
|
|
+ model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
def _write_training_loss(self, iteration, last_loss):
|
|
|
trn_loss = to_np(last_loss)
|
|
|
- self.tbwriter.add_scalar(self.metrics_root + 'train_loss', trn_loss, iteration)
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
+ self.metrics_root + 'train_loss', trn_loss, iteration)
|
|
|
|
|
|
def _write_weight_histograms(self, iteration):
|
|
|
- self.weight_vis.write_tensorboard_histograms(model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
|
|
|
-
|
|
|
+ self.weight_vis.write_tensorboard_histograms(
|
|
|
+ model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
- def _write_metrics(self, iteration, last_metrics, start_idx:int=2):
|
|
|
+ def _write_metrics(self, iteration, last_metrics, start_idx: int = 2):
|
|
|
recorder = self.learn.recorder
|
|
|
|
|
|
for i, name in enumerate(recorder.names[start_idx:]):
|
|
|
- if len(last_metrics) < i+1: return
|
|
|
+ if len(last_metrics) < i+1:
|
|
|
+ return
|
|
|
value = last_metrics[i]
|
|
|
- self.tbwriter.add_scalar(self.metrics_root + name, value, iteration)
|
|
|
-
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
+ self.metrics_root + name, value, iteration)
|
|
|
+
|
|
|
def on_batch_end(self, last_loss, metrics, iteration, **kwargs):
|
|
|
- if iteration==0: return
|
|
|
+ if iteration == 0:
|
|
|
+ return
|
|
|
self._update_batches_if_needed()
|
|
|
|
|
|
- if iteration % self.loss_iters == 0:
|
|
|
+ if iteration % self.loss_iters == 0:
|
|
|
self._write_training_loss(iteration, last_loss)
|
|
|
|
|
|
if iteration % self.weight_iters == 0:
|
|
|
self._write_weight_histograms(iteration)
|
|
|
|
|
|
+ # Doing stuff here that requires gradient info, because they get zeroed out afterwards in training loop
|
|
|
+ def on_backward_end(self, iteration, **kwargs):
|
|
|
+ if iteration == 0:
|
|
|
+ return
|
|
|
+ self._update_batches_if_needed()
|
|
|
+
|
|
|
if iteration % self.stats_iters == 0:
|
|
|
self._write_model_stats(iteration)
|
|
|
|
|
@@ -169,70 +203,100 @@ class LearnerTensorboardWriter(LearnerCallback):
|
|
|
|
|
|
|
|
|
class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
|
- def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000,
|
|
|
- stats_iters:int=1000, visual_iters:int=100):
|
|
|
- super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters,
|
|
|
- weight_iters=weight_iters, stats_iters=stats_iters)
|
|
|
+ def __init__(self, learn: Learner, base_dir: Path, name: str, loss_iters: int = 25, weight_iters: int = 1000,
|
|
|
+ stats_iters: int = 1000, visual_iters: int = 100):
|
|
|
+ super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters,
|
|
|
+ weight_iters=weight_iters, stats_iters=stats_iters)
|
|
|
self.visual_iters = visual_iters
|
|
|
self.img_gen_vis = ImageGenVisualizer()
|
|
|
+ self.gen_stats_updated = True
|
|
|
+ self.crit_stats_updated = True
|
|
|
|
|
|
- #override
|
|
|
+ # override
|
|
|
def _write_weight_histograms(self, iteration):
|
|
|
trainer = self.learn.gan_trainer
|
|
|
generator = trainer.generator
|
|
|
critic = trainer.critic
|
|
|
- self.weight_vis.write_tensorboard_histograms(model=generator, iteration=iteration, tbwriter=self.tbwriter, name='generator')
|
|
|
- self.weight_vis.write_tensorboard_histograms(model=critic, iteration=iteration, tbwriter=self.tbwriter, name='critic')
|
|
|
+ self.weight_vis.write_tensorboard_histograms(
|
|
|
+ model=generator, iteration=iteration, tbwriter=self.tbwriter, name='generator')
|
|
|
+ self.weight_vis.write_tensorboard_histograms(
|
|
|
+ model=critic, iteration=iteration, tbwriter=self.tbwriter, name='critic')
|
|
|
|
|
|
- #override
|
|
|
+ # override
|
|
|
def _write_model_stats(self, iteration):
|
|
|
trainer = self.learn.gan_trainer
|
|
|
generator = trainer.generator
|
|
|
critic = trainer.critic
|
|
|
- self.model_vis.write_tensorboard_stats(model=generator, iteration=iteration, tbwriter=self.tbwriter, name='gen_model_stats')
|
|
|
- self.model_vis.write_tensorboard_stats(model=critic, iteration=iteration, tbwriter=self.tbwriter, name='crit_model_stats')
|
|
|
|
|
|
- def _write_training_loss(self, iteration, last_loss):
|
|
|
- trainer = self.learn.gan_trainer
|
|
|
- recorder = trainer.recorder
|
|
|
+ # Don't want to write stats when model has zeroed out gradients
|
|
|
+ gen_mode = trainer.gen_mode
|
|
|
|
|
|
- if len(recorder.losses) > 0:
|
|
|
- trn_loss = to_np((recorder.losses[-1:])[0])
|
|
|
- self.tbwriter.add_scalar(self.metrics_root + 'train_loss', trn_loss, iteration)
|
|
|
+ if gen_mode:
|
|
|
+ self.model_vis.write_tensorboard_stats(
|
|
|
+ model=generator, iteration=iteration, tbwriter=self.tbwriter, name='gen_model_stats')
|
|
|
+ self.gen_stats_updated = True
|
|
|
+ else:
|
|
|
+ self.model_vis.write_tensorboard_stats(
|
|
|
+ model=critic, iteration=iteration, tbwriter=self.tbwriter, name='crit_model_stats')
|
|
|
+ self.crit_stats_updated = True
|
|
|
|
|
|
- def _write_images(self, iteration):
|
|
|
+ # override
|
|
|
+ def _write_training_loss(self, iteration, last_loss):
|
|
|
trainer = self.learn.gan_trainer
|
|
|
recorder = trainer.recorder
|
|
|
+
|
|
|
+ if len(recorder.losses) > 0:
|
|
|
+ trn_loss = to_np((recorder.losses[-1:])[0])
|
|
|
+ self.tbwriter.add_scalar(
|
|
|
+ self.metrics_root + 'train_loss', trn_loss, iteration)
|
|
|
+
|
|
|
+ def _write_images(self, iteration):
|
|
|
+ trainer = self.learn.gan_trainer
|
|
|
gen_mode = trainer.gen_mode
|
|
|
trainer.switch(gen_mode=True)
|
|
|
- self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
|
- iteration=iteration, tbwriter=self.tbwriter)
|
|
|
+ self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
|
+ iteration=iteration, tbwriter=self.tbwriter)
|
|
|
trainer.switch(gen_mode=gen_mode)
|
|
|
|
|
|
+ # override
|
|
|
def on_batch_end(self, metrics, iteration, **kwargs):
|
|
|
super().on_batch_end(metrics=metrics, iteration=iteration, **kwargs)
|
|
|
- if iteration==0: return
|
|
|
+ if iteration == 0:
|
|
|
+ return
|
|
|
if iteration % self.visual_iters == 0:
|
|
|
self._write_images(iteration)
|
|
|
|
|
|
-
|
|
|
+ # override
|
|
|
+ def on_backward_end(self, iteration, **kwargs):
|
|
|
+ if iteration == 0:
|
|
|
+ return
|
|
|
+ self._update_batches_if_needed()
|
|
|
+
|
|
|
+ if iteration % self.stats_iters == 0:
|
|
|
+ self.gen_stats_updated = False
|
|
|
+ self.crit_stats_updated = False
|
|
|
+
|
|
|
+ if not (self.gen_stats_updated and self.crit_stats_updated):
|
|
|
+ self._write_model_stats(iteration)
|
|
|
+
|
|
|
|
|
|
class ImageGenTensorboardWriter(LearnerTensorboardWriter):
|
|
|
- def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000,
|
|
|
- stats_iters:int=1000, visual_iters:int=100):
|
|
|
- super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters, weight_iters=weight_iters,
|
|
|
- stats_iters=stats_iters)
|
|
|
+ def __init__(self, learn: Learner, base_dir: Path, name: str, loss_iters: int = 25, weight_iters: int = 1000,
|
|
|
+ stats_iters: int = 1000, visual_iters: int = 100):
|
|
|
+ super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters, weight_iters=weight_iters,
|
|
|
+ stats_iters=stats_iters)
|
|
|
self.visual_iters = visual_iters
|
|
|
self.img_gen_vis = ImageGenVisualizer()
|
|
|
|
|
|
def _write_images(self, iteration):
|
|
|
- self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
|
- iteration=iteration, tbwriter=self.tbwriter)
|
|
|
+ self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
|
+ iteration=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
+ # override
|
|
|
def on_batch_end(self, metrics, iteration, **kwargs):
|
|
|
super().on_batch_end(metrics=metrics, iteration=iteration, **kwargs)
|
|
|
|
|
|
- if iteration==0:
|
|
|
+ if iteration == 0:
|
|
|
return
|
|
|
|
|
|
if iteration % self.visual_iters == 0:
|