|
@@ -26,16 +26,16 @@ class ModelHistogramVisualizer():
|
|
|
def __init__(self):
|
|
|
return
|
|
|
|
|
|
- def write_tensorboard_histograms(self, model:nn.Module, iter_count:int, tbwriter:SummaryWriter):
|
|
|
- for name, param in model.named_parameters():
|
|
|
- tbwriter.add_histogram('/weights/' + name, param, iter_count)
|
|
|
+ def write_tensorboard_histograms(self, model:nn.Module, iter_count:int, tbwriter:SummaryWriter, name:str='model'):
|
|
|
+ for param_name, param in model.named_parameters():
|
|
|
+ tbwriter.add_histogram(name + '/weights/' + param_name, param, iter_count)
|
|
|
|
|
|
|
|
|
class ModelStatsVisualizer():
|
|
|
def __init__(self):
|
|
|
return
|
|
|
|
|
|
- def write_tensorboard_stats(self, model:nn.Module, iter_count:int, tbwriter:SummaryWriter):
|
|
|
+ def write_tensorboard_stats(self, model:nn.Module, iter_count:int, tbwriter:SummaryWriter, name:str='model'):
|
|
|
gradients = [x.grad for x in model.parameters() if x.grad is not None]
|
|
|
gradient_nps = [to_np(x.data) for x in gradients]
|
|
|
|
|
@@ -43,32 +43,32 @@ class ModelStatsVisualizer():
|
|
|
return
|
|
|
|
|
|
avg_norm = sum(x.data.norm() for x in gradients)/len(gradients)
|
|
|
- tbwriter.add_scalar('/gradients/avg_norm', avg_norm, iter_count)
|
|
|
+ tbwriter.add_scalar(name + '/gradients/avg_norm', avg_norm, iter_count)
|
|
|
|
|
|
median_norm = statistics.median(x.data.norm() for x in gradients)
|
|
|
- tbwriter.add_scalar('/gradients/median_norm', median_norm, iter_count)
|
|
|
+ tbwriter.add_scalar(name + '/gradients/median_norm', median_norm, iter_count)
|
|
|
|
|
|
max_norm = max(x.data.norm() for x in gradients)
|
|
|
- tbwriter.add_scalar('/gradients/max_norm', max_norm, iter_count)
|
|
|
+ tbwriter.add_scalar(name + '/gradients/max_norm', max_norm, iter_count)
|
|
|
|
|
|
min_norm = min(x.data.norm() for x in gradients)
|
|
|
- tbwriter.add_scalar('/gradients/min_norm', min_norm, iter_count)
|
|
|
+ tbwriter.add_scalar(name + '/gradients/min_norm', min_norm, iter_count)
|
|
|
|
|
|
num_zeros = sum((np.asarray(x)==0.0).sum() for x in gradient_nps)
|
|
|
- tbwriter.add_scalar('/gradients/num_zeros', num_zeros, iter_count)
|
|
|
+ tbwriter.add_scalar(name + '/gradients/num_zeros', num_zeros, iter_count)
|
|
|
|
|
|
|
|
|
avg_gradient= sum(x.data.mean() for x in gradients)/len(gradients)
|
|
|
- tbwriter.add_scalar('/gradients/avg_gradient', avg_gradient, iter_count)
|
|
|
+ tbwriter.add_scalar(name + '/gradients/avg_gradient', avg_gradient, iter_count)
|
|
|
|
|
|
median_gradient = statistics.median(x.data.median() for x in gradients)
|
|
|
- tbwriter.add_scalar('/gradients/median_gradient', median_gradient, iter_count)
|
|
|
+ tbwriter.add_scalar(name + '/gradients/median_gradient', median_gradient, iter_count)
|
|
|
|
|
|
max_gradient = max(x.data.max() for x in gradients)
|
|
|
- tbwriter.add_scalar('/gradients/max_gradient', max_gradient, iter_count)
|
|
|
+ tbwriter.add_scalar(name + '/gradients/max_gradient', max_gradient, iter_count)
|
|
|
|
|
|
min_gradient = min(x.data.min() for x in gradients)
|
|
|
- tbwriter.add_scalar('/gradients/min_gradient', min_gradient, iter_count)
|
|
|
+ tbwriter.add_scalar(name + '/gradients/min_gradient', min_gradient, iter_count)
|
|
|
|
|
|
class ImageGenVisualizer():
|
|
|
def output_image_gen_visuals(self, learn:Learner, trn_batch:Tuple, val_batch:Tuple, iter_count:int, tbwriter:SummaryWriter):
|
|
@@ -98,51 +98,27 @@ class ImageGenVisualizer():
|
|
|
|
|
|
#--------Below are what you actually want ot use, in practice----------------#
|
|
|
|
|
|
-class ModelTensorboardStatsWriter():
|
|
|
- def __init__(self, base_dir: Path, module: nn.Module, name: str, stats_iters: int=10):
|
|
|
- self.base_dir = base_dir
|
|
|
- self.name = name
|
|
|
- log_dir = base_dir/name
|
|
|
- self.tbwriter = SummaryWriter(log_dir=str(log_dir))
|
|
|
- self.hook = module.register_forward_hook(self.forward_hook)
|
|
|
- self.stats_iters = stats_iters
|
|
|
- self.iter_count = 0
|
|
|
- self.model_vis = ModelStatsVisualizer()
|
|
|
-
|
|
|
- def forward_hook(self, module:nn.Module, input, output):
|
|
|
- self.iter_count += 1
|
|
|
- if self.iter_count % self.stats_iters == 0:
|
|
|
- self.model_vis.write_tensorboard_stats(module, iter_count=self.iter_count, tbwriter=self.tbwriter)
|
|
|
-
|
|
|
|
|
|
- def close(self):
|
|
|
- self.tbwriter.close()
|
|
|
- self.hook.remove()
|
|
|
|
|
|
-class GANTensorboardWriter(LearnerCallback):
|
|
|
- def __init__(self, learn:Learner, base_dir:Path, name:str, stats_iters:int=10,
|
|
|
- visual_iters:int=200, weight_iters:int=1000):
|
|
|
+class LearnerTensorboardWriter(LearnerCallback):
|
|
|
+ def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000, stats_iters:int=1000):
|
|
|
super().__init__(learn=learn)
|
|
|
self.base_dir = base_dir
|
|
|
self.name = name
|
|
|
log_dir = base_dir/name
|
|
|
self.tbwriter = SummaryWriter(log_dir=str(log_dir))
|
|
|
- self.stats_iters = stats_iters
|
|
|
- self.visual_iters = visual_iters
|
|
|
+ self.loss_iters = loss_iters
|
|
|
self.weight_iters = weight_iters
|
|
|
- self.img_gen_vis = ImageGenVisualizer()
|
|
|
- self.graph_vis = ModelGraphVisualizer()
|
|
|
+ self.stats_iters = stats_iters
|
|
|
+ self.iter_count = 0
|
|
|
self.weight_vis = ModelHistogramVisualizer()
|
|
|
+ self.model_vis = ModelStatsVisualizer()
|
|
|
self.data = None
|
|
|
+ #Keeping track of iterations in callback, because callback can be used for multiple epocs and multiple fit calls.
|
|
|
+ #This ensures that graphs show continuous iterations rather than resetting to 0 (which makes them much harder to read!)
|
|
|
+ self.iteration = -1
|
|
|
|
|
|
- def on_batch_end(self, iteration, metrics, **kwargs):
|
|
|
- if iteration==0:
|
|
|
- return
|
|
|
-
|
|
|
- trainer = self.learn.gan_trainer
|
|
|
- generator = trainer.generator
|
|
|
- critic = trainer.critic
|
|
|
- recorder = trainer.recorder
|
|
|
+ def _update_batches_if_needed(self):
|
|
|
#one_batch is extremely slow. this is an optimization
|
|
|
update_batches = self.data is not self.learn.data
|
|
|
|
|
@@ -151,71 +127,143 @@ class GANTensorboardWriter(LearnerCallback):
|
|
|
self.trn_batch = self.learn.data.one_batch(DatasetType.Train, detach=False, denorm=False)
|
|
|
self.val_batch = self.learn.data.one_batch(DatasetType.Valid, detach=False, denorm=False)
|
|
|
|
|
|
- if iteration % self.stats_iters == 0:
|
|
|
- if len(recorder.losses) > 0:
|
|
|
- trn_loss = to_np((recorder.losses[-1:])[0])
|
|
|
- self.tbwriter.add_scalar('/loss/trn_loss', trn_loss, iteration)
|
|
|
+ def _write_model_stats(self, iteration):
|
|
|
+ self.model_vis.write_tensorboard_stats(model=self.learn.model, iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
- if len(recorder.val_losses) > 0:
|
|
|
- val_loss = (recorder.val_losses[-1:])[0]
|
|
|
- self.tbwriter.add_scalar('/loss/val_loss', val_loss, iteration)
|
|
|
+ def _write_training_loss(self, iteration, last_loss):
|
|
|
+ trn_loss = to_np(last_loss)
|
|
|
+ self.tbwriter.add_scalar('/loss/trn_loss', trn_loss, iteration)
|
|
|
|
|
|
- #TODO: Figure out how to do metrics here and gan vs critic loss
|
|
|
- #values = [met[-1:] for met in recorder.metrics]
|
|
|
+ def _write_weight_histograms(self, iteration):
|
|
|
+ self.weight_vis.write_tensorboard_histograms(model=self.learn.model, iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
- if iteration % self.visual_iters == 0:
|
|
|
- gen_mode = trainer.gen_mode
|
|
|
- trainer.switch(gen_mode=True)
|
|
|
- self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
|
- iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
- trainer.switch(gen_mode=gen_mode)
|
|
|
+ def _write_val_loss(self, iteration, last_metrics):
|
|
|
+ #TODO: Not a fan of this indexing but...what to do?
|
|
|
+ val_loss = last_metrics[0]
|
|
|
+ self.tbwriter.add_scalar('/loss/val_loss', val_loss, iteration)
|
|
|
+
|
|
|
+ def _write_metrics(self, iteration):
|
|
|
+ rec = self.learn.recorder
|
|
|
+
|
|
|
+ for i, name in enumerate(rec.names[3:]):
|
|
|
+ if len(rec.metrics) == 0: continue
|
|
|
+ if len(rec.metrics[-1:]) == 0: continue
|
|
|
+ if len(rec.metrics[-1:][0]) == 0: continue
|
|
|
+ value = rec.metrics[-1:][0][i]
|
|
|
+ if value is None: continue
|
|
|
+ self.tbwriter.add_scalar('/metrics/' + name, to_np(value), iteration)
|
|
|
+
|
|
|
+ def on_batch_end(self, last_loss, metrics, **kwargs):
|
|
|
+ self.iteration +=1
|
|
|
+ iteration = self.iteration
|
|
|
+
|
|
|
+ if iteration==0:
|
|
|
+ return
|
|
|
+
|
|
|
+ self._update_batches_if_needed()
|
|
|
+
|
|
|
+ if iteration % self.loss_iters == 0:
|
|
|
+ self._write_training_loss(iteration, last_loss)
|
|
|
|
|
|
if iteration % self.weight_iters == 0:
|
|
|
- self.weight_vis.write_tensorboard_histograms(model=generator, iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
- self.weight_vis.write_tensorboard_histograms(model=critic, iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
-
|
|
|
+ self._write_weight_histograms(iteration)
|
|
|
|
|
|
+ if iteration % self.stats_iters == 0:
|
|
|
+ self._write_model_stats(iteration)
|
|
|
|
|
|
-class ImageGenTensorboardWriter(LearnerCallback):
|
|
|
- def __init__(self, learn:Learner, base_dir:Path, name:str, stats_iters:int=25,
|
|
|
- visual_iters:int=200, weight_iters:int=25):
|
|
|
- super().__init__(learn=learn)
|
|
|
- self.base_dir = base_dir
|
|
|
- self.name = name
|
|
|
- log_dir = base_dir/name
|
|
|
- self.tbwriter = SummaryWriter(log_dir=str(log_dir))
|
|
|
- self.stats_iters = stats_iters
|
|
|
+ def on_epoch_end(self, metrics, last_metrics, **kwargs):
|
|
|
+ iteration = self.iteration
|
|
|
+ self._write_val_loss(iteration, last_metrics)
|
|
|
+ self._write_metrics(iteration)
|
|
|
+
|
|
|
+
|
|
|
+class GANTensorboardWriter(LearnerTensorboardWriter):
|
|
|
+ def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000,
|
|
|
+ stats_iters:int=1000, visual_iters:int=100):
|
|
|
+ super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters,
|
|
|
+ weight_iters=weight_iters, stats_iters=stats_iters)
|
|
|
self.visual_iters = visual_iters
|
|
|
- self.weight_iters = weight_iters
|
|
|
- self.iter_count = 0
|
|
|
- self.weight_vis = ModelHistogramVisualizer()
|
|
|
self.img_gen_vis = ImageGenVisualizer()
|
|
|
- self.data = None
|
|
|
|
|
|
- def on_batch_end(self, iteration, last_loss, metrics, **kwargs):
|
|
|
+ #override
|
|
|
+ def _write_training_loss(self, iteration, last_loss):
|
|
|
+ trainer = self.learn.gan_trainer
|
|
|
+ recorder = trainer.recorder
|
|
|
+
|
|
|
+ if len(recorder.losses) > 0:
|
|
|
+ trn_loss = to_np((recorder.losses[-1:])[0])
|
|
|
+ self.tbwriter.add_scalar('/loss/trn_loss', trn_loss, iteration)
|
|
|
+
|
|
|
+ #override
|
|
|
+ def _write_weight_histograms(self, iteration):
|
|
|
+ trainer = self.learn.gan_trainer
|
|
|
+ generator = trainer.generator
|
|
|
+ critic = trainer.critic
|
|
|
+
|
|
|
+ self.weight_vis.write_tensorboard_histograms(model=generator, iter_count=iteration, tbwriter=self.tbwriter, name='generator')
|
|
|
+ self.weight_vis.write_tensorboard_histograms(model=critic, iter_count=iteration, tbwriter=self.tbwriter, name='critic')
|
|
|
+
|
|
|
+ #override
|
|
|
+ def _write_model_stats(self, iteration):
|
|
|
+ trainer = self.learn.gan_trainer
|
|
|
+ generator = trainer.generator
|
|
|
+ critic = trainer.critic
|
|
|
+
|
|
|
+ self.model_vis.write_tensorboard_stats(model=generator, iter_count=iteration, tbwriter=self.tbwriter, name='generator')
|
|
|
+ self.model_vis.write_tensorboard_stats(model=critic, iter_count=iteration, tbwriter=self.tbwriter, name='critic')
|
|
|
+
|
|
|
+ #override
|
|
|
+ def _write_val_loss(self, iteration, last_metrics):
|
|
|
+ trainer = self.learn.gan_trainer
|
|
|
+ recorder = trainer.recorder
|
|
|
+
|
|
|
+ if len(recorder.val_losses) > 0:
|
|
|
+ val_loss = (recorder.val_losses[-1:])[0]
|
|
|
+ self.tbwriter.add_scalar('/loss/val_loss', val_loss, iteration)
|
|
|
+
|
|
|
+
|
|
|
+ def _write_images(self, iteration):
|
|
|
+ trainer = self.learn.gan_trainer
|
|
|
+ recorder = trainer.recorder
|
|
|
+
|
|
|
+ gen_mode = trainer.gen_mode
|
|
|
+ trainer.switch(gen_mode=True)
|
|
|
+ self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
|
+ iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
+ trainer.switch(gen_mode=gen_mode)
|
|
|
+
|
|
|
+ def on_batch_end(self, metrics, **kwargs):
|
|
|
+ super().on_batch_end(metrics=metrics, **kwargs)
|
|
|
+
|
|
|
+ iteration = self.iteration
|
|
|
+
|
|
|
if iteration==0:
|
|
|
return
|
|
|
|
|
|
- #one_batch is extremely slow. this is an optimization
|
|
|
- update_batches = self.data is not self.learn.data
|
|
|
+ if iteration % self.visual_iters == 0:
|
|
|
+ self._write_images(iteration)
|
|
|
|
|
|
- if update_batches:
|
|
|
- self.data = self.learn.data
|
|
|
- self.trn_batch = self.learn.data.one_batch(DatasetType.Train, detach=False, denorm=False)
|
|
|
- self.val_batch = self.learn.data.one_batch(DatasetType.Valid, detach=False, denorm=False)
|
|
|
+
|
|
|
|
|
|
- if iteration % self.stats_iters == 0:
|
|
|
- trn_loss = to_np(last_loss)
|
|
|
- self.tbwriter.add_scalar('/loss/trn_loss', trn_loss, iteration)
|
|
|
+class ImageGenTensorboardWriter(LearnerTensorboardWriter):
|
|
|
+ def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000,
|
|
|
+ stats_iters:int=1000, visual_iters:int=100):
|
|
|
+ super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters, weight_iters=weight_iters,
|
|
|
+ stats_iters=stats_iters)
|
|
|
+ self.visual_iters = visual_iters
|
|
|
+ self.img_gen_vis = ImageGenVisualizer()
|
|
|
|
|
|
- if iteration % self.visual_iters == 0:
|
|
|
- self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
|
- iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
+ def _write_images(self, iteration):
|
|
|
+ self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
|
|
|
+ iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
|
|
|
- if iteration % self.weight_iters == 0:
|
|
|
- self.weight_vis.write_tensorboard_histograms(model=self.learn.model, iter_count=iteration, tbwriter=self.tbwriter)
|
|
|
+ def on_batch_end(self, metrics, **kwargs):
|
|
|
+ super().on_batch_end(metrics=metrics, **kwargs)
|
|
|
|
|
|
- def on_epoch_end(self, iteration, metrics, last_metrics, **kwargs):
|
|
|
- #TODO: Not a fan of this indexing but...what to do?
|
|
|
- val_loss = last_metrics[0]
|
|
|
- self.tbwriter.add_scalar('/loss/val_loss', val_loss, iteration)
|
|
|
+ iteration = self.iteration
|
|
|
+
|
|
|
+ if iteration==0:
|
|
|
+ return
|
|
|
+
|
|
|
+ if iteration % self.visual_iters == 0:
|
|
|
+ self._write_images(iteration)
|