from fastai.core import * from fastai.torch_core import * from fastai.vision import * from fastai.vision.gan import AdaptiveLoss, accuracy_thresh_expand _conv_args = dict(leaky=0.2, norm_type=NormType.Spectral) def _conv(ni:int, nf:int, ks:int=3, stride:int=1, **kwargs): return conv_layer(ni, nf, ks=ks, stride=stride, **_conv_args, **kwargs) def custom_gan_critic(n_channels:int=3, nf:int=256, n_blocks:int=3, p:int=0.15): "Critic to train a `GAN`." layers = [ _conv(n_channels, nf, ks=4, stride=2), nn.Dropout2d(p/2)] for i in range(n_blocks): layers += [ _conv(nf, nf, ks=3, stride=1), nn.Dropout2d(p), _conv(nf, nf*2, ks=4, stride=2, self_attention=(i==0))] nf *= 2 layers += [ _conv(nf, nf, ks=3, stride=1), _conv(nf, 1, ks=4, bias=False, padding=0, use_activ=False), Flatten()] return nn.Sequential(*layers) def colorize_crit_learner(data:ImageDataBunch, loss_critic=AdaptiveLoss(nn.BCEWithLogitsLoss()), nf:int=256)->Learner: return Learner(data, custom_gan_critic(nf=nf), metrics=accuracy_thresh_expand, loss_func=loss_critic, wd=1e-3)