from fastai.vision import * from fastai.vision.learner import cnn_config from fasterai.unet import * from .loss import FeatureLoss def colorize_gen_learner(data:ImageDataBunch, gen_loss=FeatureLoss(), arch=models.resnet34): return unet_learner2(data, arch, wd=1e-3, blur=True, norm_type=NormType.Spectral, self_attention=True, y_range=(-3.,3.), loss_func=gen_loss) #The code below is meant to be merged into fastaiv1 ideally def unet_learner2(data:DataBunch, arch:Callable, pretrained:bool=True, blur_final:bool=True, norm_type:Optional[NormType]=NormType, split_on:Optional[SplitFuncOrIdxList]=None, blur:bool=False, self_attention:bool=False, y_range:Optional[Tuple[float,float]]=None, last_cross:bool=True, bottle:bool=False, **kwargs:Any)->None: "Build Unet learner from `data` and `arch`." meta = cnn_config(arch) body = create_body(arch, pretrained) model = to_device(DynamicUnet2(body, n_classes=data.c, blur=blur, blur_final=blur_final, self_attention=self_attention, y_range=y_range, norm_type=norm_type, last_cross=last_cross, bottle=bottle), data.device) learn = Learner(data, model, **kwargs) learn.split(ifnone(split_on,meta['split'])) if pretrained: learn.freeze() apply_init(model[2], nn.init.kaiming_normal_) return learn