{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "os.environ['CUDA_VISIBLE_DEVICES']='0' " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from fasterai.visualize import *\n", "plt.style.use('dark_background')\n", "torch.backends.cudnn.benchmark=True" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Adjust render_factor (int) if image doesn't look quite right (max 45 on 11GB GPU). \n", "#Lower render factors (as low as 12-15) tend to work well for old and low quality videos.\n", "#High render factors (25-45) tend to work well for higher quality and more recent videos\n", "\n", "#Not satisfied with color saturation? Lower the render factor. \n", "#Unacceptable object flicker? Increase the render factor.\n", "\n", "#It literally just is a number multiplied by 16 to get the square render resolution. \n", "#Note that this doesn't affect the resolution of the final output- the output is the same resolution as the input.\n", "#Example: render_factor=21 => color is rendered at 16x21 = 336x336 px. \n", "render_factor=21\n", "#Specify media_url. Many sources will work (YouTube, Imgur, Twitter, Reddit, etc). \n", "#Complete list here: https://rg3.github.io/youtube-dl/supportedsites.html. \n", "#NOTE: Make source_url None to just read from file at ./video/source/[file_name] directly without modification\n", "#source_url= 'https://twitter.com/silentmoviegifs/status/1112256563182489600'\n", "#source_url='https://archive.org/details/impact'\n", "source_url='https://twitter.com/silentmoviegifs/status/1116751583386034176'\n", "file_name = 'DogBath.mp4'" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "colorizer = get_video_colorizer()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "if source_url is not None:\n", " video_path = colorizer.colorize_from_url(source_url, file_name, render_factor=render_factor)\n", " show_video_in_notebook(video_path)\n", "else:\n", " video_path = colorizer.colorize_from_file_name(file_name)\n", " show_video_in_notebook(video_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" }, "toc": { "colors": { "hover_highlight": "#DAA520", "navigate_num": "#000000", "navigate_text": "#333333", "running_highlight": "#FF0000", "selected_highlight": "#FFD700", "sidebar_border": "#EEEEEE", "wrapper_background": "#FFFFFF" }, "moveMenuLeft": true, "nav_menu": { "height": "67px", "width": "252px" }, "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 4, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false, "widenNotebook": false } }, "nbformat": 4, "nbformat_minor": 2 }