import torch.nn as nn import math import torch.utils.model_zoo as model_zoo from ..layers import * __all__ = ['vgg_resnet50'] model_urls = { 'vgg_resnet50': 'https://download.pytorch.org/models/vggresnet.pth', } def conv(ni, nf, ks=3, stride=1): return nn.Conv2d(ni, nf, kernel_size=ks, stride=stride, padding=ks//2, bias=False) def bn1(planes): m = nn.BatchNorm1d(planes) m.weight.data.fill_(1) m.bias.data.zero_() return m def bn(planes, init_zero=False): m = nn.BatchNorm2d(planes) m.weight.data.fill_(0 if init_zero else 1) m.bias.data.zero_() return m class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super().__init__() self.conv1 = conv(inplanes, planes, stride=stride) self.bn1 = bn(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv(planes, planes) self.bn2 = bn(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x if self.downsample is not None: residual = self.downsample(x) out = self.conv1(x) out = self.relu(out) out = self.bn1(out) out = self.conv2(out) out = residual + out out = self.relu(out) out = self.bn2(out) return out class BottleneckFinal(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super().__init__() self.conv1 = conv(inplanes, planes, ks=1) self.bn1 = bn(planes) self.conv2 = conv(planes, planes, stride=stride) self.bn2 = bn(planes) self.conv3 = conv(planes, planes*4, ks=1) self.bn3 = bn(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x if self.downsample is not None: residual = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = residual + out out = self.bn3(out) out = self.relu(out) return out class BottleneckZero(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super().__init__() self.conv1 = conv(inplanes, planes, ks=1) self.bn1 = bn(planes) self.conv2 = conv(planes, planes, stride=stride) self.bn2 = bn(planes) self.conv3 = conv(planes, planes*4, ks=1) self.bn3 = bn(planes * 4, init_zero=True) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x if self.downsample is not None: residual = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out = residual + out out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super().__init__() self.conv1 = conv(inplanes, planes, ks=1) self.bn1 = bn(planes) self.conv2 = conv(planes, planes, stride=stride) self.bn2 = bn(planes) self.conv3 = conv(planes, planes*4, ks=1) self.bn3 = bn(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x if self.downsample is not None: residual = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out = residual + out out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, k=1, vgg_head=False): super().__init__() self.inplanes = 64 features = [conv(3, 64, ks=7, stride=2) , bn(64) , nn.ReLU(inplace=True) , nn.MaxPool2d(kernel_size=3, stride=2, padding=1) , self._make_layer(block, int(64*k), layers[0]) , self._make_layer(block, int(128*k), layers[1], stride=2) , self._make_layer(block, int(256*k), layers[2], stride=2) , self._make_layer(block, int(512*k), layers[3], stride=2)] out_sz = int(512*k) * block.expansion if vgg_head: features += [nn.AdaptiveAvgPool2d(3), Flatten() , nn.Linear(out_sz*3*3, 4096), nn.ReLU(inplace=True), bn1(4096), nn.Dropout(0.25) , nn.Linear(4096, 4096), nn.ReLU(inplace=True), bn1(4096), nn.Dropout(0.25) , nn.Linear(4096, num_classes)] else: features += [nn.AdaptiveAvgPool2d(1), Flatten(), nn.Linear(out_sz, num_classes)] self.features = nn.Sequential(*features) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv(self.inplanes, planes*block.expansion, ks=1, stride=stride), bn(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): return self.features(x) def bnf_resnet50 (): return ResNet(BottleneckFinal, [3, 4, 6, 3]) def bnz_resnet50 (): return ResNet(BottleneckZero, [3, 4, 6, 3]) def w5_resnet50 (): return ResNet(Bottleneck, [2, 3, 3, 2], k=1.5) def w25_resnet50(): return ResNet(Bottleneck, [3, 4, 4, 3], k=1.25) def w125_resnet50(): return ResNet(Bottleneck, [3, 4, 6, 3], k=1.125) def vgg_resnet34(): return ResNet(BasicBlock, [3, 4, 6, 3], vgg_head=True) def vgg_resnet50(pretrained=False): model = ResNet(Bottleneck, [3, 4, 6, 3], vgg_head=True) if pretrained: model.load_state_dict(torch.load('/home/jhoward/.torch/models/vgg_resnet50.pth')) return model