import torch import torch.nn as nn from torch.autograd import Variable from functools import reduce class LambdaBase(nn.Sequential): def __init__(self, fn, *args): super(LambdaBase, self).__init__(*args) self.lambda_func = fn def forward_prepare(self, input): output = [] for module in self._modules.values(): output.append(module(input)) return output if output else input class Lambda(LambdaBase): def forward(self, input): return self.lambda_func(self.forward_prepare(input)) class LambdaMap(LambdaBase): def forward(self, input): return list(map(self.lambda_func,self.forward_prepare(input))) class LambdaReduce(LambdaBase): def forward(self, input): return reduce(self.lambda_func,self.forward_prepare(input)) def resnext_101_32x4d(): return nn.Sequential( # Sequential, nn.Conv2d(3,64,(7, 7),(2, 2),(3, 3),1,1,bias=False), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d((3, 3),(2, 2),(1, 1)), nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(64,128,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(128), nn.ReLU(), ), nn.Conv2d(128,256,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(256), ), nn.Sequential( # Sequential, nn.Conv2d(64,256,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(256), ), ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(256,128,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(128), nn.ReLU(), ), nn.Conv2d(128,256,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(256), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(256,128,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(128), nn.ReLU(), ), nn.Conv2d(128,256,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(256), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), ), nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(256,256,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256,256,(3, 3),(2, 2),(1, 1),1,32,bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), ), nn.Sequential( # Sequential, nn.Conv2d(256,512,(1, 1),(2, 2),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), ), ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512,256,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512,256,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512,256,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), ), nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(2, 2),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), nn.Sequential( # Sequential, nn.Conv2d(512,1024,(1, 1),(2, 2),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), ), nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024,1024,(3, 3),(2, 2),(1, 1),1,32,bias=False), nn.BatchNorm2d(1024), nn.ReLU(), ), nn.Conv2d(1024,2048,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(2048), ), nn.Sequential( # Sequential, nn.Conv2d(1024,2048,(1, 1),(2, 2),(0, 0),1,1,bias=False), nn.BatchNorm2d(2048), ), ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(2048,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024,1024,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(1024), nn.ReLU(), ), nn.Conv2d(1024,2048,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(2048), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(2048,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024,1024,(3, 3),(1, 1),(1, 1),1,32,bias=False), nn.BatchNorm2d(1024), nn.ReLU(), ), nn.Conv2d(1024,2048,(1, 1),(1, 1),(0, 0),1,1,bias=False), nn.BatchNorm2d(2048), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x,y: x+y), # CAddTable, nn.ReLU(), ), ), nn.AvgPool2d((7, 7),(1, 1)), Lambda(lambda x: x.view(x.size(0),-1)), # View, nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(2048,1000)), # Linear, )