tensorboard.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342
  1. import fastai
  2. from fastai import *
  3. from fastai.vision import *
  4. from fastai.callbacks import *
  5. from fastai.vision.gan import *
  6. from fastai.core import *
  7. from threading import Thread
  8. from time import sleep
  9. from queue import Queue
  10. import statistics
  11. import torchvision.utils as vutils
  12. from tensorboardX import SummaryWriter
  13. class ModelImageSet():
  14. @staticmethod
  15. def get_list_from_model(learn:Learner, ds_type:DatasetType, batch:Tuple)->[]:
  16. image_sets = []
  17. x,y = batch[0],batch[1]
  18. preds = learn.pred_batch(ds_type=ds_type, batch=(x,y), reconstruct=True)
  19. for orig_px, real_px, gen in zip(x,y,preds):
  20. orig = Image(px=orig_px)
  21. real = Image(px=real_px)
  22. image_set = ModelImageSet(orig=orig, real=real, gen=gen)
  23. image_sets.append(image_set)
  24. return image_sets
  25. def __init__(self, orig:Image, real:Image, gen:Image):
  26. self.orig = orig
  27. self.real = real
  28. self.gen = gen
  29. #TODO: There aren't any callbacks using this yet. Not sure if we want this included (not sure if it's useful, honestly)
  30. class ModelGraphVisualizer():
  31. def __init__(self):
  32. return
  33. def write_model_graph_to_tensorboard(self, md:DataBunch, model:nn.Module, tbwriter:SummaryWriter):
  34. x,y = md.one_batch(ds_type=DatasetType.Valid, detach=False, denorm=False)
  35. tbwriter.add_graph(model=model, input_to_model=x)
  36. class HistogramRequest():
  37. def __init__(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str):
  38. self.params = [(name, values.clone().detach()) for (name, values) in model.named_parameters()]
  39. self.iteration = iteration
  40. self.tbwriter = tbwriter
  41. self.name = name
  42. class ModelHistogramVisualizer():
  43. def __init__(self):
  44. self.exit = False
  45. self.queue = Queue()
  46. self.thread = Thread(target=self._queue_processor)
  47. self.thread.start()
  48. def _queue_processor(self):
  49. while not self.exit:
  50. while not self.queue.empty():
  51. request = self.queue.get()
  52. self._write_async(request)
  53. sleep(0.1)
  54. def _write_async(self, request:HistogramRequest):
  55. try:
  56. params = request.params
  57. iteration = request.iteration
  58. tbwriter = request.tbwriter
  59. name = request.name
  60. for param_name, values in params:
  61. tag = name + '/weights/' + param_name
  62. tbwriter.add_histogram(tag=tag, values=values, global_step=iteration)
  63. except Exception as e:
  64. print(("Failed to write model histograms to Tensorboard: {0}").format(e))
  65. #If this isn't done async then this is sloooooow
  66. def write_tensorboard_histograms(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model'):
  67. request = HistogramRequest(model, iteration, tbwriter, name)
  68. self.queue.put(request)
  69. def __del__(self):
  70. self.exit = True
  71. self.thread.join()
  72. class ModelStatsVisualizer():
  73. def __init__(self):
  74. self.gradients_root = '/gradients/'
  75. def write_tensorboard_stats(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model_stats'):
  76. gradients = [x.grad for x in model.parameters() if x.grad is not None]
  77. gradient_nps = [to_np(x.data) for x in gradients]
  78. if len(gradients) == 0: return
  79. avg_norm = sum(x.data.norm() for x in gradients)/len(gradients)
  80. tbwriter.add_scalar(
  81. tag=name + self.gradients_root + 'avg_norm', scalar_value=avg_norm, global_step=iteration)
  82. median_norm = statistics.median(x.data.norm() for x in gradients)
  83. tbwriter.add_scalar(
  84. tag=name + self.gradients_root + 'median_norm', scalar_value=median_norm, global_step=iteration)
  85. max_norm = max(x.data.norm() for x in gradients)
  86. tbwriter.add_scalar(
  87. tag=name + self.gradients_root + 'max_norm', scalar_value=max_norm, global_step=iteration)
  88. min_norm = min(x.data.norm() for x in gradients)
  89. tbwriter.add_scalar(
  90. tag=name + self.gradients_root + 'min_norm', scalar_value=min_norm, global_step=iteration)
  91. num_zeros = sum((np.asarray(x) == 0.0).sum() for x in gradient_nps)
  92. tbwriter.add_scalar(
  93. tag=name + self.gradients_root + 'num_zeros', scalar_value=num_zeros, global_step=iteration)
  94. avg_gradient = sum(x.data.mean() for x in gradients)/len(gradients)
  95. tbwriter.add_scalar(
  96. tag=name + self.gradients_root + 'avg_gradient', scalar_value=avg_gradient, global_step=iteration)
  97. median_gradient = statistics.median(x.data.median() for x in gradients)
  98. tbwriter.add_scalar(
  99. tag=name + self.gradients_root + 'median_gradient', scalar_value=median_gradient, global_step=iteration)
  100. max_gradient = max(x.data.max() for x in gradients)
  101. tbwriter.add_scalar(
  102. tag=name + self.gradients_root + 'max_gradient', scalar_value=max_gradient, global_step=iteration)
  103. min_gradient = min(x.data.min() for x in gradients)
  104. tbwriter.add_scalar(
  105. tag=name + self.gradients_root + 'min_gradient', scalar_value=min_gradient, global_step=iteration)
  106. class ImageGenVisualizer():
  107. def output_image_gen_visuals(self, learn:Learner, trn_batch:Tuple, val_batch:Tuple, iteration:int, tbwriter:SummaryWriter):
  108. self._output_visuals(learn=learn, batch=val_batch, iteration=iteration,
  109. tbwriter=tbwriter, ds_type=DatasetType.Valid)
  110. self._output_visuals(learn=learn, batch=trn_batch, iteration=iteration,
  111. tbwriter=tbwriter, ds_type=DatasetType.Train)
  112. def _output_visuals(self, learn:Learner, batch:Tuple, iteration:int, tbwriter:SummaryWriter, ds_type:DatasetType):
  113. image_sets = ModelImageSet.get_list_from_model(learn=learn, batch=batch, ds_type=ds_type)
  114. self._write_tensorboard_images(
  115. image_sets=image_sets, iteration=iteration, tbwriter=tbwriter, ds_type=ds_type)
  116. def _write_tensorboard_images(self, image_sets:[ModelImageSet], iteration:int, tbwriter:SummaryWriter, ds_type:DatasetType):
  117. orig_images = []
  118. gen_images = []
  119. real_images = []
  120. for image_set in image_sets:
  121. orig_images.append(image_set.orig.px)
  122. gen_images.append(image_set.gen.px)
  123. real_images.append(image_set.real.px)
  124. prefix = ds_type.name
  125. tbwriter.add_image(
  126. tag=prefix + ' orig images', img_tensor=vutils.make_grid(orig_images, normalize=True), global_step=iteration)
  127. tbwriter.add_image(
  128. tag=prefix + ' gen images', img_tensor=vutils.make_grid(gen_images, normalize=True), global_step=iteration)
  129. tbwriter.add_image(
  130. tag=prefix + ' real images', img_tensor=vutils.make_grid(real_images, normalize=True), global_step=iteration)
  131. #--------Below are what you actually want to use, in practice----------------#
  132. class LearnerTensorboardWriter(LearnerCallback):
  133. def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000, stats_iters:int=1000):
  134. super().__init__(learn=learn)
  135. self.base_dir = base_dir
  136. self.name = name
  137. log_dir = base_dir/name
  138. self.tbwriter = SummaryWriter(log_dir=str(log_dir))
  139. self.loss_iters = loss_iters
  140. self.weight_iters = weight_iters
  141. self.stats_iters = stats_iters
  142. self.weight_vis = ModelHistogramVisualizer()
  143. self.model_vis = ModelStatsVisualizer()
  144. self.data = None
  145. self.metrics_root = '/metrics/'
  146. def _update_batches_if_needed(self):
  147. # one_batch function is extremely slow. this is an optimization
  148. update_batches = self.data is not self.learn.data
  149. if update_batches:
  150. self.data = self.learn.data
  151. self.trn_batch = self.learn.data.one_batch(
  152. ds_type=DatasetType.Train, detach=True, denorm=False, cpu=False)
  153. self.val_batch = self.learn.data.one_batch(
  154. ds_type=DatasetType.Valid, detach=True, denorm=False, cpu=False)
  155. def _write_model_stats(self, iteration:int):
  156. self.model_vis.write_tensorboard_stats(
  157. model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
  158. def _write_training_loss(self, iteration:int, last_loss:Tensor):
  159. scalar_value = to_np(last_loss)
  160. tag = self.metrics_root + 'train_loss'
  161. self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration)
  162. def _write_weight_histograms(self, iteration:int):
  163. self.weight_vis.write_tensorboard_histograms(
  164. model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
  165. #TODO: Relying on a specific hardcoded start_idx here isn't great. Is there a better solution?
  166. def _write_metrics(self, iteration:int, last_metrics:MetricsList, start_idx:int=2):
  167. recorder = self.learn.recorder
  168. for i, name in enumerate(recorder.names[start_idx:]):
  169. if len(last_metrics) < i+1: return
  170. scalar_value = last_metrics[i]
  171. tag = self.metrics_root + name
  172. self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration)
  173. def on_batch_end(self, last_loss:Tensor, iteration:int, **kwargs):
  174. if iteration == 0: return
  175. self._update_batches_if_needed()
  176. if iteration % self.loss_iters == 0:
  177. self._write_training_loss(iteration=iteration, last_loss=last_loss)
  178. if iteration % self.weight_iters == 0:
  179. self._write_weight_histograms(iteration=iteration)
  180. # Doing stuff here that requires gradient info, because they get zeroed out afterwards in training loop
  181. def on_backward_end(self, iteration:int, **kwargs):
  182. if iteration == 0: return
  183. self._update_batches_if_needed()
  184. if iteration % self.stats_iters == 0:
  185. self._write_model_stats(iteration=iteration)
  186. def on_epoch_end(self, last_metrics:MetricsList, iteration:int, **kwargs):
  187. self._write_metrics(iteration=iteration, last_metrics=last_metrics)
  188. # TODO: We're overriding almost everything here. Seems like a good idea to question that ("is a" vs "has a")
  189. class GANTensorboardWriter(LearnerTensorboardWriter):
  190. def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000,
  191. stats_iters:int=1000, visual_iters:int=100):
  192. super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters,
  193. weight_iters=weight_iters, stats_iters=stats_iters)
  194. self.visual_iters = visual_iters
  195. self.img_gen_vis = ImageGenVisualizer()
  196. self.gen_stats_updated = True
  197. self.crit_stats_updated = True
  198. # override
  199. def _write_weight_histograms(self, iteration:int):
  200. trainer = self.learn.gan_trainer
  201. generator = trainer.generator
  202. critic = trainer.critic
  203. self.weight_vis.write_tensorboard_histograms(
  204. model=generator, iteration=iteration, tbwriter=self.tbwriter, name='generator')
  205. self.weight_vis.write_tensorboard_histograms(
  206. model=critic, iteration=iteration, tbwriter=self.tbwriter, name='critic')
  207. # override
  208. def _write_model_stats(self, iteration:int):
  209. trainer = self.learn.gan_trainer
  210. generator = trainer.generator
  211. critic = trainer.critic
  212. # Don't want to write stats when model is not iterated on and hence has zeroed out gradients
  213. gen_mode = trainer.gen_mode
  214. if gen_mode and not self.gen_stats_updated:
  215. self.model_vis.write_tensorboard_stats(
  216. model=generator, iteration=iteration, tbwriter=self.tbwriter, name='gen_model_stats')
  217. self.gen_stats_updated = True
  218. if not gen_mode and not self.crit_stats_updated:
  219. self.model_vis.write_tensorboard_stats(
  220. model=critic, iteration=iteration, tbwriter=self.tbwriter, name='crit_model_stats')
  221. self.crit_stats_updated = True
  222. # override
  223. def _write_training_loss(self, iteration:int, last_loss:Tensor):
  224. trainer = self.learn.gan_trainer
  225. recorder = trainer.recorder
  226. if len(recorder.losses) > 0:
  227. scalar_value = to_np((recorder.losses[-1:])[0])
  228. tag = self.metrics_root + 'train_loss'
  229. self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration)
  230. def _write_images(self, iteration:int):
  231. trainer = self.learn.gan_trainer
  232. #TODO: Switching gen_mode temporarily seems a bit hacky here. Certainly not a good side-effect. Is there a better way?
  233. gen_mode = trainer.gen_mode
  234. try:
  235. trainer.switch(gen_mode=True)
  236. self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
  237. iteration=iteration, tbwriter=self.tbwriter)
  238. finally:
  239. trainer.switch(gen_mode=gen_mode)
  240. # override
  241. def on_batch_end(self, iteration:int, **kwargs):
  242. super().on_batch_end(iteration=iteration, **kwargs)
  243. if iteration == 0: return
  244. if iteration % self.visual_iters == 0:
  245. self._write_images(iteration=iteration)
  246. # override
  247. def on_backward_end(self, iteration:int, **kwargs):
  248. if iteration == 0: return
  249. self._update_batches_if_needed()
  250. #TODO: This could perhaps be implemented as queues of requests instead but that seemed like overkill.
  251. # But I'm not the biggest fan of maintaining these boolean flags either... Review pls.
  252. if iteration % self.stats_iters == 0:
  253. self.gen_stats_updated = False
  254. self.crit_stats_updated = False
  255. if not (self.gen_stats_updated and self.crit_stats_updated):
  256. self._write_model_stats(iteration=iteration)
  257. class ImageGenTensorboardWriter(LearnerTensorboardWriter):
  258. def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000,
  259. stats_iters: int = 1000, visual_iters: int = 100):
  260. super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters, weight_iters=weight_iters,
  261. stats_iters=stats_iters)
  262. self.visual_iters = visual_iters
  263. self.img_gen_vis = ImageGenVisualizer()
  264. def _write_images(self, iteration:int):
  265. self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
  266. iteration=iteration, tbwriter=self.tbwriter)
  267. # override
  268. def on_batch_end(self, iteration:int, **kwargs):
  269. super().on_batch_end(iteration=iteration, **kwargs)
  270. if iteration == 0: return
  271. if iteration % self.visual_iters == 0:
  272. self._write_images(iteration=iteration)