tensorboard.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266
  1. import fastai
  2. from fastai import *
  3. from fastai.vision import *
  4. from fastai.callbacks import *
  5. from fastai.vision.gan import *
  6. from fastai.core import *
  7. import statistics
  8. from .images import ModelImageSet
  9. import torchvision.utils as vutils
  10. from tensorboardX import SummaryWriter
  11. class ModelGraphVisualizer():
  12. def __init__(self):
  13. return
  14. def write_model_graph_to_tensorboard(self, md:DataBunch, model:nn.Module, tbwriter:SummaryWriter):
  15. try:
  16. x,y = md.one_batch(DatasetType.Valid, detach=False, denorm=False)
  17. tbwriter.add_graph(model, x)
  18. except Exception as e:
  19. print(("Failed to generate graph for model: {0}. Note that there's an outstanding issue with "
  20. + "scopes being addressed here: https://github.com/pytorch/pytorch/pull/12400").format(e))
  21. class ModelHistogramVisualizer():
  22. def __init__(self):
  23. return
  24. def write_tensorboard_histograms(self, model:nn.Module, iter_count:int, tbwriter:SummaryWriter, name:str='model'):
  25. try:
  26. for param_name, param in model.named_parameters():
  27. tbwriter.add_histogram(name + '/weights/' + param_name, param, iter_count)
  28. except Exception as e:
  29. print(("Failed to update histogram for model: {0}").format(e))
  30. class ModelStatsVisualizer():
  31. def __init__(self):
  32. return
  33. def write_tensorboard_stats(self, model:nn.Module, iter_count:int, tbwriter:SummaryWriter, name:str='model'):
  34. try:
  35. gradients = [x.grad for x in model.parameters() if x.grad is not None]
  36. gradient_nps = [to_np(x.data) for x in gradients]
  37. if len(gradients) == 0:
  38. return
  39. avg_norm = sum(x.data.norm() for x in gradients)/len(gradients)
  40. tbwriter.add_scalar(name + '/gradients/avg_norm', avg_norm, iter_count)
  41. median_norm = statistics.median(x.data.norm() for x in gradients)
  42. tbwriter.add_scalar(name + '/gradients/median_norm', median_norm, iter_count)
  43. max_norm = max(x.data.norm() for x in gradients)
  44. tbwriter.add_scalar(name + '/gradients/max_norm', max_norm, iter_count)
  45. min_norm = min(x.data.norm() for x in gradients)
  46. tbwriter.add_scalar(name + '/gradients/min_norm', min_norm, iter_count)
  47. num_zeros = sum((np.asarray(x)==0.0).sum() for x in gradient_nps)
  48. tbwriter.add_scalar(name + '/gradients/num_zeros', num_zeros, iter_count)
  49. avg_gradient= sum(x.data.mean() for x in gradients)/len(gradients)
  50. tbwriter.add_scalar(name + '/gradients/avg_gradient', avg_gradient, iter_count)
  51. median_gradient = statistics.median(x.data.median() for x in gradients)
  52. tbwriter.add_scalar(name + '/gradients/median_gradient', median_gradient, iter_count)
  53. max_gradient = max(x.data.max() for x in gradients)
  54. tbwriter.add_scalar(name + '/gradients/max_gradient', max_gradient, iter_count)
  55. min_gradient = min(x.data.min() for x in gradients)
  56. tbwriter.add_scalar(name + '/gradients/min_gradient', min_gradient, iter_count)
  57. except Exception as e:
  58. print(("Failed to update tensorboard stats for model: {0}").format(e))
  59. class ImageGenVisualizer():
  60. def output_image_gen_visuals(self, learn:Learner, trn_batch:Tuple, val_batch:Tuple, iter_count:int, tbwriter:SummaryWriter):
  61. self._output_visuals(learn=learn, batch=val_batch, iter_count=iter_count, tbwriter=tbwriter, ds_type=DatasetType.Valid)
  62. self._output_visuals(learn=learn, batch=trn_batch, iter_count=iter_count, tbwriter=tbwriter, ds_type=DatasetType.Train)
  63. def _output_visuals(self, learn:Learner, batch:Tuple, iter_count:int, tbwriter:SummaryWriter, ds_type: DatasetType):
  64. image_sets = ModelImageSet.get_list_from_model(learn=learn, batch=batch, ds_type=ds_type)
  65. self._write_tensorboard_images(image_sets=image_sets, iter_count=iter_count, tbwriter=tbwriter, ds_type=ds_type)
  66. def _write_tensorboard_images(self, image_sets:[ModelImageSet], iter_count:int, tbwriter:SummaryWriter, ds_type: DatasetType):
  67. try:
  68. orig_images = []
  69. gen_images = []
  70. real_images = []
  71. for image_set in image_sets:
  72. orig_images.append(image_set.orig.px)
  73. gen_images.append(image_set.gen.px)
  74. real_images.append(image_set.real.px)
  75. prefix = str(ds_type)
  76. tbwriter.add_image(prefix + ' orig images', vutils.make_grid(orig_images, normalize=True), iter_count)
  77. tbwriter.add_image(prefix + ' gen images', vutils.make_grid(gen_images, normalize=True), iter_count)
  78. tbwriter.add_image(prefix + ' real images', vutils.make_grid(real_images, normalize=True), iter_count)
  79. except Exception as e:
  80. print(("Failed to update tensorboard images for model: {0}").format(e))
  81. #--------Below are what you actually want ot use, in practice----------------#
  82. class LearnerTensorboardWriter(LearnerCallback):
  83. def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000, stats_iters:int=1000):
  84. super().__init__(learn=learn)
  85. self.base_dir = base_dir
  86. self.name = name
  87. log_dir = base_dir/name
  88. self.tbwriter = SummaryWriter(log_dir=str(log_dir))
  89. self.loss_iters = loss_iters
  90. self.weight_iters = weight_iters
  91. self.stats_iters = stats_iters
  92. self.weight_vis = ModelHistogramVisualizer()
  93. self.model_vis = ModelStatsVisualizer()
  94. self.data = None
  95. def _update_batches_if_needed(self):
  96. #one_batch function is extremely slow. this is an optimization
  97. update_batches = self.data is not self.learn.data
  98. if update_batches:
  99. self.data = self.learn.data
  100. self.trn_batch = self.learn.data.one_batch(DatasetType.Train, detach=True, denorm=False, cpu=False)
  101. self.val_batch = self.learn.data.one_batch(DatasetType.Valid, detach=True, denorm=False, cpu=False)
  102. def _write_model_stats(self, iteration):
  103. self.model_vis.write_tensorboard_stats(model=self.learn.model, iter_count=iteration, tbwriter=self.tbwriter)
  104. def _write_training_loss(self, iteration, last_loss):
  105. trn_loss = to_np(last_loss)
  106. self.tbwriter.add_scalar('/loss/trn_loss', trn_loss, iteration)
  107. def _write_weight_histograms(self, iteration):
  108. self.weight_vis.write_tensorboard_histograms(model=self.learn.model, iter_count=iteration, tbwriter=self.tbwriter)
  109. def _write_val_loss(self, iteration, last_metrics):
  110. #TODO: Not a fan of this indexing but...what to do?
  111. val_loss = last_metrics[0]
  112. self.tbwriter.add_scalar('/loss/val_loss', val_loss, iteration)
  113. def _write_metrics(self, iteration):
  114. rec = self.learn.recorder
  115. for i, name in enumerate(rec.names[3:]):
  116. if len(rec.metrics) == 0: continue
  117. if len(rec.metrics[-1:]) == 0: continue
  118. if len(rec.metrics[-1:][0]) == 0: continue
  119. value = rec.metrics[-1:][0][i]
  120. if value is None: continue
  121. self.tbwriter.add_scalar('/metrics/' + name, to_np(value), iteration)
  122. def on_batch_end(self, last_loss, metrics, iteration, **kwargs):
  123. if iteration==0:
  124. return
  125. self._update_batches_if_needed()
  126. if iteration % self.loss_iters == 0:
  127. self._write_training_loss(iteration, last_loss)
  128. if iteration % self.weight_iters == 0:
  129. self._write_weight_histograms(iteration)
  130. if iteration % self.stats_iters == 0:
  131. self._write_model_stats(iteration)
  132. def on_epoch_end(self, metrics, last_metrics, iteration, **kwargs):
  133. self._write_val_loss(iteration, last_metrics)
  134. self._write_metrics(iteration)
  135. class GANTensorboardWriter(LearnerTensorboardWriter):
  136. def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000,
  137. stats_iters:int=1000, visual_iters:int=100):
  138. super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters,
  139. weight_iters=weight_iters, stats_iters=stats_iters)
  140. self.visual_iters = visual_iters
  141. self.img_gen_vis = ImageGenVisualizer()
  142. #override
  143. def _write_training_loss(self, iteration, last_loss):
  144. trainer = self.learn.gan_trainer
  145. recorder = trainer.recorder
  146. if len(recorder.losses) > 0:
  147. trn_loss = to_np((recorder.losses[-1:])[0])
  148. self.tbwriter.add_scalar('/loss/trn_loss', trn_loss, iteration)
  149. #override
  150. def _write_weight_histograms(self, iteration):
  151. trainer = self.learn.gan_trainer
  152. generator = trainer.generator
  153. critic = trainer.critic
  154. self.weight_vis.write_tensorboard_histograms(model=generator, iter_count=iteration, tbwriter=self.tbwriter, name='generator')
  155. self.weight_vis.write_tensorboard_histograms(model=critic, iter_count=iteration, tbwriter=self.tbwriter, name='critic')
  156. #override
  157. def _write_model_stats(self, iteration):
  158. trainer = self.learn.gan_trainer
  159. generator = trainer.generator
  160. critic = trainer.critic
  161. self.model_vis.write_tensorboard_stats(model=generator, iter_count=iteration, tbwriter=self.tbwriter, name='generator')
  162. self.model_vis.write_tensorboard_stats(model=critic, iter_count=iteration, tbwriter=self.tbwriter, name='critic')
  163. #override
  164. def _write_val_loss(self, iteration, last_metrics):
  165. trainer = self.learn.gan_trainer
  166. recorder = trainer.recorder
  167. if len(recorder.val_losses) > 0:
  168. val_loss = (recorder.val_losses[-1:])[0]
  169. self.tbwriter.add_scalar('/loss/val_loss', val_loss, iteration)
  170. def _write_images(self, iteration):
  171. trainer = self.learn.gan_trainer
  172. recorder = trainer.recorder
  173. gen_mode = trainer.gen_mode
  174. trainer.switch(gen_mode=True)
  175. self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
  176. iter_count=iteration, tbwriter=self.tbwriter)
  177. trainer.switch(gen_mode=gen_mode)
  178. def on_batch_end(self, metrics, iteration, **kwargs):
  179. super().on_batch_end(metrics=metrics, iteration=iteration, **kwargs)
  180. if iteration==0:
  181. return
  182. if iteration % self.visual_iters == 0:
  183. self._write_images(iteration)
  184. class ImageGenTensorboardWriter(LearnerTensorboardWriter):
  185. def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000,
  186. stats_iters:int=1000, visual_iters:int=100):
  187. super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters, weight_iters=weight_iters,
  188. stats_iters=stats_iters)
  189. self.visual_iters = visual_iters
  190. self.img_gen_vis = ImageGenVisualizer()
  191. def _write_images(self, iteration):
  192. self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
  193. iter_count=iteration, tbwriter=self.tbwriter)
  194. def on_batch_end(self, metrics, iteration, **kwargs):
  195. super().on_batch_end(metrics=metrics, iteration=iteration, **kwargs)
  196. if iteration==0:
  197. return
  198. if iteration % self.visual_iters == 0:
  199. self._write_images(iteration)