loss.py 1.4 KB

1234567891011121314151617181920212223242526272829303132333435363738
  1. from fastai import *
  2. from fastai.core import *
  3. from fastai.torch_core import *
  4. from fastai.callbacks import hook_outputs
  5. import torchvision.models as models
  6. #"Before activations" in ESRGAN paper
  7. class FeatureLoss(nn.Module):
  8. def __init__(self, layer_wgts=[5,15,2]):
  9. super().__init__()
  10. self.m_feat = models.vgg16_bn(True).features.cuda().eval()
  11. requires_grad(self.m_feat, False)
  12. blocks = [i-2 for i,o in enumerate(children(self.m_feat)) if isinstance(o,nn.MaxPool2d)]
  13. layer_ids = blocks[2:5]
  14. self.loss_features = [self.m_feat[i] for i in layer_ids]
  15. self.hooks = hook_outputs(self.loss_features, detach=False)
  16. self.wgts = layer_wgts
  17. self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))]
  18. self.base_loss = F.l1_loss
  19. def _make_features(self, x, clone=False):
  20. self.m_feat(x)
  21. return [(o.clone() if clone else o) for o in self.hooks.stored]
  22. def forward(self, input, target):
  23. out_feat = self._make_features(target, clone=True)
  24. in_feat = self._make_features(input)
  25. self.feat_losses = [self.base_loss(input,target)]
  26. self.feat_losses += [self.base_loss(f_in, f_out)*w
  27. for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
  28. self.metrics = dict(zip(self.metric_names, self.feat_losses))
  29. return sum(self.feat_losses)
  30. def __del__(self): self.hooks.remove()