tensorboard.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. import fastai
  2. from fastai import *
  3. from fastai.vision import *
  4. from fastai.callbacks import *
  5. from fastai.vision.gan import *
  6. from fastai.core import *
  7. import statistics
  8. from .images import ModelImageSet
  9. import torchvision.utils as vutils
  10. from tensorboardX import SummaryWriter
  11. class ModelGraphVisualizer():
  12. def __init__(self):
  13. return
  14. def write_model_graph_to_tensorboard(self, md:DataBunch, model:nn.Module, tbwriter:SummaryWriter):
  15. try:
  16. x,y = md.one_batch(DatasetType.Valid, detach=False, denorm=False)
  17. tbwriter.add_graph(model, x)
  18. except Exception as e:
  19. print(("Failed to generate graph for model: {0}. Note that there's an outstanding issue with "
  20. + "scopes being addressed here: https://github.com/pytorch/pytorch/pull/12400").format(e))
  21. class ModelHistogramVisualizer():
  22. def __init__(self):
  23. return
  24. def write_tensorboard_histograms(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model'):
  25. try:
  26. for param_name, param in model.named_parameters():
  27. tbwriter.add_histogram(name + '/weights/' + param_name, param, iteration)
  28. except Exception as e:
  29. print(("Failed to update histogram for model: {0}").format(e))
  30. class ModelStatsVisualizer():
  31. def __init__(self):
  32. return
  33. def write_tensorboard_stats(self, model:nn.Module, iteration:int, tbwriter:SummaryWriter, name:str='model_stats'):
  34. try:
  35. gradients = [x.grad for x in model.parameters() if x.grad is not None]
  36. gradient_nps = [to_np(x.data) for x in gradients]
  37. if len(gradients) == 0:
  38. return
  39. avg_norm = sum(x.data.norm() for x in gradients)/len(gradients)
  40. tbwriter.add_scalar(name + '/gradients/avg_norm', avg_norm, iteration)
  41. median_norm = statistics.median(x.data.norm() for x in gradients)
  42. tbwriter.add_scalar(name + '/gradients/median_norm', median_norm, iteration)
  43. max_norm = max(x.data.norm() for x in gradients)
  44. tbwriter.add_scalar(name + '/gradients/max_norm', max_norm, iteration)
  45. min_norm = min(x.data.norm() for x in gradients)
  46. tbwriter.add_scalar(name + '/gradients/min_norm', min_norm, iteration)
  47. num_zeros = sum((np.asarray(x)==0.0).sum() for x in gradient_nps)
  48. tbwriter.add_scalar(name + '/gradients/num_zeros', num_zeros, iteration)
  49. avg_gradient= sum(x.data.mean() for x in gradients)/len(gradients)
  50. tbwriter.add_scalar(name + '/gradients/avg_gradient', avg_gradient, iteration)
  51. median_gradient = statistics.median(x.data.median() for x in gradients)
  52. tbwriter.add_scalar(name + '/gradients/median_gradient', median_gradient, iteration)
  53. max_gradient = max(x.data.max() for x in gradients)
  54. tbwriter.add_scalar(name + '/gradients/max_gradient', max_gradient, iteration)
  55. min_gradient = min(x.data.min() for x in gradients)
  56. tbwriter.add_scalar(name + '/gradients/min_gradient', min_gradient, iteration)
  57. except Exception as e:
  58. print(("Failed to update tensorboard stats for model: {0}").format(e))
  59. class ImageGenVisualizer():
  60. def output_image_gen_visuals(self, learn:Learner, trn_batch:Tuple, val_batch:Tuple, iteration:int, tbwriter:SummaryWriter):
  61. self._output_visuals(learn=learn, batch=val_batch, iteration=iteration, tbwriter=tbwriter, ds_type=DatasetType.Valid)
  62. self._output_visuals(learn=learn, batch=trn_batch, iteration=iteration, tbwriter=tbwriter, ds_type=DatasetType.Train)
  63. def _output_visuals(self, learn:Learner, batch:Tuple, iteration:int, tbwriter:SummaryWriter, ds_type: DatasetType):
  64. image_sets = ModelImageSet.get_list_from_model(learn=learn, batch=batch, ds_type=ds_type)
  65. self._write_tensorboard_images(image_sets=image_sets, iteration=iteration, tbwriter=tbwriter, ds_type=ds_type)
  66. def _write_tensorboard_images(self, image_sets:[ModelImageSet], iteration:int, tbwriter:SummaryWriter, ds_type: DatasetType):
  67. try:
  68. orig_images = []
  69. gen_images = []
  70. real_images = []
  71. for image_set in image_sets:
  72. orig_images.append(image_set.orig.px)
  73. gen_images.append(image_set.gen.px)
  74. real_images.append(image_set.real.px)
  75. prefix = str(ds_type)
  76. tbwriter.add_image(prefix + ' orig images', vutils.make_grid(orig_images, normalize=True), iteration)
  77. tbwriter.add_image(prefix + ' gen images', vutils.make_grid(gen_images, normalize=True), iteration)
  78. tbwriter.add_image(prefix + ' real images', vutils.make_grid(real_images, normalize=True), iteration)
  79. except Exception as e:
  80. print(("Failed to update tensorboard images for model: {0}").format(e))
  81. #--------Below are what you actually want ot use, in practice----------------#
  82. class LearnerTensorboardWriter(LearnerCallback):
  83. def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000, stats_iters:int=1000):
  84. super().__init__(learn=learn)
  85. self.base_dir = base_dir
  86. self.name = name
  87. log_dir = base_dir/name
  88. self.tbwriter = SummaryWriter(log_dir=str(log_dir))
  89. self.loss_iters = loss_iters
  90. self.weight_iters = weight_iters
  91. self.stats_iters = stats_iters
  92. self.weight_vis = ModelHistogramVisualizer()
  93. self.model_vis = ModelStatsVisualizer()
  94. self.data = None
  95. self.metrics_root = '/metrics/'
  96. def _update_batches_if_needed(self):
  97. #one_batch function is extremely slow. this is an optimization
  98. update_batches = self.data is not self.learn.data
  99. if update_batches:
  100. self.data = self.learn.data
  101. self.trn_batch = self.learn.data.one_batch(DatasetType.Train, detach=True, denorm=False, cpu=False)
  102. self.val_batch = self.learn.data.one_batch(DatasetType.Valid, detach=True, denorm=False, cpu=False)
  103. def _write_model_stats(self, iteration):
  104. self.model_vis.write_tensorboard_stats(model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
  105. def _write_training_loss(self, iteration, last_loss):
  106. trn_loss = to_np(last_loss)
  107. self.tbwriter.add_scalar(self.metrics_root + 'train_loss', trn_loss, iteration)
  108. def _write_weight_histograms(self, iteration):
  109. self.weight_vis.write_tensorboard_histograms(model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter)
  110. def _write_metrics(self, iteration, last_metrics, start_idx:int=2):
  111. recorder = self.learn.recorder
  112. for i, name in enumerate(recorder.names[start_idx:]):
  113. if len(last_metrics) < i+1: return
  114. value = last_metrics[i]
  115. self.tbwriter.add_scalar(self.metrics_root + name, value, iteration)
  116. def on_batch_end(self, last_loss, metrics, iteration, **kwargs):
  117. if iteration==0: return
  118. self._update_batches_if_needed()
  119. if iteration % self.loss_iters == 0:
  120. self._write_training_loss(iteration, last_loss)
  121. if iteration % self.weight_iters == 0:
  122. self._write_weight_histograms(iteration)
  123. if iteration % self.stats_iters == 0:
  124. self._write_model_stats(iteration)
  125. def on_epoch_end(self, metrics, last_metrics, iteration, **kwargs):
  126. self._write_metrics(iteration, last_metrics)
  127. class GANTensorboardWriter(LearnerTensorboardWriter):
  128. def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000,
  129. stats_iters:int=1000, visual_iters:int=100):
  130. super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters,
  131. weight_iters=weight_iters, stats_iters=stats_iters)
  132. self.visual_iters = visual_iters
  133. self.img_gen_vis = ImageGenVisualizer()
  134. #override
  135. def _write_weight_histograms(self, iteration):
  136. trainer = self.learn.gan_trainer
  137. generator = trainer.generator
  138. critic = trainer.critic
  139. self.weight_vis.write_tensorboard_histograms(model=generator, iteration=iteration, tbwriter=self.tbwriter, name='generator')
  140. self.weight_vis.write_tensorboard_histograms(model=critic, iteration=iteration, tbwriter=self.tbwriter, name='critic')
  141. #override
  142. def _write_model_stats(self, iteration):
  143. trainer = self.learn.gan_trainer
  144. generator = trainer.generator
  145. critic = trainer.critic
  146. self.model_vis.write_tensorboard_stats(model=generator, iteration=iteration, tbwriter=self.tbwriter, name='gen_model_stats')
  147. self.model_vis.write_tensorboard_stats(model=critic, iteration=iteration, tbwriter=self.tbwriter, name='crit_model_stats')
  148. def _write_images(self, iteration):
  149. trainer = self.learn.gan_trainer
  150. recorder = trainer.recorder
  151. gen_mode = trainer.gen_mode
  152. trainer.switch(gen_mode=True)
  153. self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
  154. iteration=iteration, tbwriter=self.tbwriter)
  155. trainer.switch(gen_mode=gen_mode)
  156. def on_batch_end(self, metrics, iteration, **kwargs):
  157. super().on_batch_end(metrics=metrics, iteration=iteration, **kwargs)
  158. if iteration==0: return
  159. if iteration % self.visual_iters == 0:
  160. self._write_images(iteration)
  161. class ImageGenTensorboardWriter(LearnerTensorboardWriter):
  162. def __init__(self, learn:Learner, base_dir:Path, name:str, loss_iters:int=25, weight_iters:int=1000,
  163. stats_iters:int=1000, visual_iters:int=100):
  164. super().__init__(learn=learn, base_dir=base_dir, name=name, loss_iters=loss_iters, weight_iters=weight_iters,
  165. stats_iters=stats_iters)
  166. self.visual_iters = visual_iters
  167. self.img_gen_vis = ImageGenVisualizer()
  168. def _write_images(self, iteration):
  169. self.img_gen_vis.output_image_gen_visuals(learn=self.learn, trn_batch=self.trn_batch, val_batch=self.val_batch,
  170. iteration=iteration, tbwriter=self.tbwriter)
  171. def on_batch_end(self, metrics, iteration, **kwargs):
  172. super().on_batch_end(metrics=metrics, iteration=iteration, **kwargs)
  173. if iteration==0:
  174. return
  175. if iteration % self.visual_iters == 0:
  176. self._write_images(iteration)