123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- from numpy import ndarray
- from abc import ABC, abstractmethod
- from .critics import colorize_crit_learner
- from fastai.core import *
- from fastai.vision import *
- from fastai.vision.image import *
- from fastai.vision.data import *
- from fastai import *
- import math
- from scipy import misc
- import cv2
- from PIL import Image as PilImage
- class IFilter(ABC):
- @abstractmethod
- def filter(self, orig_image:PilImage, filtered_image:PilImage, render_factor:int)->PilImage:
- pass
-
- class BaseFilter(IFilter):
- def __init__(self, learn:Learner):
- super().__init__()
- self.learn=learn
- self.norm, self.denorm = normalize_funcs(*imagenet_stats)
- def _transform(self, image:PilImage)->PilImage:
- return image
- def _scale_to_square(self, orig:PilImage, targ:int)->PilImage:
- #a simple stretch to fit a square really makes a big difference in rendering quality/consistency.
- #I've tried padding to the square as well (reflect, symetric, constant, etc). Not as good!
- targ_sz = (targ, targ)
- return orig.resize(targ_sz, resample=PIL.Image.BILINEAR)
- def _get_model_ready_image(self, orig:PilImage, sz:int)->PilImage:
- result = self._scale_to_square(orig, sz)
- result = self._transform(result)
- return result
- def _model_process(self, orig:PilImage, sz:int)->PilImage:
- model_image = self._get_model_ready_image(orig, sz)
- x = pil2tensor(model_image,np.float32)
- x.div_(255)
- x,y = self.norm((x,x), do_x=True)
- result = self.learn.pred_batch(ds_type=DatasetType.Valid,
- batch=(x[None].cuda(),y[None]), reconstruct=True)
- out = result[0]
- out = self.denorm(out.px, do_x=False)
- out = image2np(out*255).astype(np.uint8)
- return PilImage.fromarray(out)
- def _unsquare(self, image:PilImage, orig:PilImage)->PilImage:
- targ_sz = orig.size
- image = image.resize(targ_sz, resample=PIL.Image.BILINEAR)
- return image
- class ColorizerFilter(BaseFilter):
- def __init__(self, learn:Learner, map_to_orig:bool=True):
- super().__init__(learn=learn)
- self.render_base=16
- self.map_to_orig=map_to_orig
- def filter(self, orig_image:PilImage, filtered_image:PilImage, render_factor:int)->PilImage:
- render_sz = render_factor * self.render_base
- model_image = self._model_process(orig=filtered_image, sz=render_sz)
- if self.map_to_orig:
- return self._post_process(model_image, orig_image)
- else:
- return self._post_process(model_image, filtered_image)
- def _transform(self, image:PilImage)->PilImage:
- return image.convert('LA').convert('RGB')
- #This takes advantage of the fact that human eyes are much less sensitive to
- #imperfections in chrominance compared to luminance. This means we can
- #save a lot on memory and processing in the model, yet get a great high
- #resolution result at the end. This is primarily intended just for
- #inference
- def _post_process(self, raw_color:PilImage, orig:PilImage)->PilImage:
- raw_color = self._unsquare(raw_color, orig)
- color_np = np.asarray(raw_color)
- orig_np = np.asarray(orig)
- color_yuv = cv2.cvtColor(color_np, cv2.COLOR_BGR2YUV)
- #do a black and white transform first to get better luminance values
- orig_yuv = cv2.cvtColor(orig_np, cv2.COLOR_BGR2YUV)
- hires = np.copy(orig_yuv)
- hires[:,:,1:3] = color_yuv[:,:,1:3]
- final = cv2.cvtColor(hires, cv2.COLOR_YUV2BGR)
- final = PilImage.fromarray(final)
- return final
- class MasterFilter(BaseFilter):
- def __init__(self, filters:[IFilter], render_factor:int):
- self.filters=filters
- self.render_factor=render_factor
- def filter(self, orig_image:PilImage, filtered_image:PilImage, render_factor:int=None)->PilImage:
- render_factor = self.render_factor if render_factor is None else render_factor
- for filter in self.filters:
- filtered_image=filter.filter(orig_image, filtered_image, render_factor)
-
- return filtered_image
|