filters.py 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. from numpy import ndarray
  2. from abc import ABC, abstractmethod
  3. from .critics import colorize_crit_learner
  4. from fastai.core import *
  5. from fastai.vision import *
  6. from fastai.vision.image import *
  7. from fastai.vision.data import *
  8. from fastai import *
  9. import math
  10. from scipy import misc
  11. import cv2
  12. from PIL import Image as PilImage
  13. class IFilter(ABC):
  14. @abstractmethod
  15. def filter(self, orig_image:PilImage, filtered_image:PilImage, render_factor:int)->PilImage:
  16. pass
  17. class BaseFilter(IFilter):
  18. def __init__(self, learn:Learner):
  19. super().__init__()
  20. self.learn=learn
  21. self.norm, self.denorm = normalize_funcs(*imagenet_stats)
  22. def _transform(self, image:PilImage)->PilImage:
  23. return image
  24. def _scale_to_square(self, orig:PilImage, targ:int)->PilImage:
  25. #a simple stretch to fit a square really makes a big difference in rendering quality/consistency.
  26. #I've tried padding to the square as well (reflect, symetric, constant, etc). Not as good!
  27. targ_sz = (targ, targ)
  28. return orig.resize(targ_sz, resample=PIL.Image.BILINEAR)
  29. def _get_model_ready_image(self, orig:PilImage, sz:int)->PilImage:
  30. result = self._scale_to_square(orig, sz)
  31. result = self._transform(result)
  32. return result
  33. def _model_process(self, orig:PilImage, sz:int)->PilImage:
  34. model_image = self._get_model_ready_image(orig, sz)
  35. x = pil2tensor(model_image,np.float32)
  36. x.div_(255)
  37. x,y = self.norm((x,x), do_x=True)
  38. result = self.learn.pred_batch(ds_type=DatasetType.Valid,
  39. batch=(x[None].cuda(),y[None]), reconstruct=True)
  40. out = result[0]
  41. out = self.denorm(out.px, do_x=False)
  42. out = image2np(out*255).astype(np.uint8)
  43. return PilImage.fromarray(out)
  44. def _unsquare(self, image:PilImage, orig:PilImage)->PilImage:
  45. targ_sz = orig.size
  46. image = image.resize(targ_sz, resample=PIL.Image.BILINEAR)
  47. return image
  48. class ColorizerFilter(BaseFilter):
  49. def __init__(self, learn:Learner, map_to_orig:bool=True):
  50. super().__init__(learn=learn)
  51. self.render_base=16
  52. self.map_to_orig=map_to_orig
  53. def filter(self, orig_image:PilImage, filtered_image:PilImage, render_factor:int)->PilImage:
  54. render_sz = render_factor * self.render_base
  55. model_image = self._model_process(orig=filtered_image, sz=render_sz)
  56. if self.map_to_orig:
  57. return self._post_process(model_image, orig_image)
  58. else:
  59. return self._post_process(model_image, filtered_image)
  60. def _transform(self, image:PilImage)->PilImage:
  61. return image.convert('LA').convert('RGB')
  62. #This takes advantage of the fact that human eyes are much less sensitive to
  63. #imperfections in chrominance compared to luminance. This means we can
  64. #save a lot on memory and processing in the model, yet get a great high
  65. #resolution result at the end. This is primarily intended just for
  66. #inference
  67. def _post_process(self, raw_color:PilImage, orig:PilImage)->PilImage:
  68. raw_color = self._unsquare(raw_color, orig)
  69. color_np = np.asarray(raw_color)
  70. orig_np = np.asarray(orig)
  71. color_yuv = cv2.cvtColor(color_np, cv2.COLOR_BGR2YUV)
  72. #do a black and white transform first to get better luminance values
  73. orig_yuv = cv2.cvtColor(orig_np, cv2.COLOR_BGR2YUV)
  74. hires = np.copy(orig_yuv)
  75. hires[:,:,1:3] = color_yuv[:,:,1:3]
  76. final = cv2.cvtColor(hires, cv2.COLOR_YUV2BGR)
  77. final = PilImage.fromarray(final)
  78. return final
  79. class MasterFilter(BaseFilter):
  80. def __init__(self, filters:[IFilter], render_factor:int):
  81. self.filters=filters
  82. self.render_factor=render_factor
  83. def filter(self, orig_image:PilImage, filtered_image:PilImage, render_factor:int=None)->PilImage:
  84. render_factor = self.render_factor if render_factor is None else render_factor
  85. for filter in self.filters:
  86. filtered_image=filter.filter(orig_image, filtered_image, render_factor)
  87. return filtered_image