1234567891011121314151617181920212223242526272829303132333435363738394041424344 |
- from fastai.core import *
- from fastai.torch_core import *
- from fastai.vision import *
- from fastai.vision.gan import AdaptiveLoss, accuracy_thresh_expand
- _conv_args = dict(leaky=0.2, norm_type=NormType.Spectral)
- def _conv(ni: int, nf: int, ks: int = 3, stride: int = 1, **kwargs):
- return conv_layer(ni, nf, ks=ks, stride=stride, **_conv_args, **kwargs)
- def custom_gan_critic(
- n_channels: int = 3, nf: int = 256, n_blocks: int = 3, p: int = 0.15
- ):
- "Critic to train a `GAN`."
- layers = [_conv(n_channels, nf, ks=4, stride=2), nn.Dropout2d(p / 2)]
- for i in range(n_blocks):
- layers += [
- _conv(nf, nf, ks=3, stride=1),
- nn.Dropout2d(p),
- _conv(nf, nf * 2, ks=4, stride=2, self_attention=(i == 0)),
- ]
- nf *= 2
- layers += [
- _conv(nf, nf, ks=3, stride=1),
- _conv(nf, 1, ks=4, bias=False, padding=0, use_activ=False),
- Flatten(),
- ]
- return nn.Sequential(*layers)
- def colorize_crit_learner(
- data: ImageDataBunch,
- loss_critic=AdaptiveLoss(nn.BCEWithLogitsLoss()),
- nf: int = 256,
- ) -> Learner:
- return Learner(
- data,
- custom_gan_critic(nf=nf),
- metrics=accuracy_thresh_expand,
- loss_func=loss_critic,
- wd=1e-3,
- )
|