layers.py 2.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. from fastai.layers import *
  2. from fastai.torch_core import *
  3. from torch.nn.parameter import Parameter
  4. from torch.autograd import Variable
  5. #The code below is meant to be merged into fastaiv1 ideally
  6. def conv_layer2(ni:int, nf:int, ks:int=3, stride:int=1, padding:int=None, bias:bool=None, is_1d:bool=False,
  7. norm_type:Optional[NormType]=NormType.Batch, use_activ:bool=True, leaky:float=None,
  8. transpose:bool=False, init:Callable=nn.init.kaiming_normal_, self_attention:bool=False,
  9. extra_bn:bool=False):
  10. "Create a sequence of convolutional (`ni` to `nf`), ReLU (if `use_activ`) and batchnorm (if `bn`) layers."
  11. if padding is None: padding = (ks-1)//2 if not transpose else 0
  12. bn = norm_type in (NormType.Batch, NormType.BatchZero) or extra_bn==True
  13. if bias is None: bias = not bn
  14. conv_func = nn.ConvTranspose2d if transpose else nn.Conv1d if is_1d else nn.Conv2d
  15. conv = init_default(conv_func(ni, nf, kernel_size=ks, bias=bias, stride=stride, padding=padding), init)
  16. if norm_type==NormType.Weight: conv = weight_norm(conv)
  17. elif norm_type==NormType.Spectral: conv = spectral_norm(conv)
  18. layers = [conv]
  19. if use_activ: layers.append(relu(True, leaky=leaky))
  20. if bn: layers.append((nn.BatchNorm1d if is_1d else nn.BatchNorm2d)(nf))
  21. #TODO: Account for 1D
  22. #if norm_type==NormType.Weight: layers.append(MeanOnlyBatchNorm(nf))
  23. if self_attention: layers.append(SelfAttention(nf))
  24. return nn.Sequential(*layers)
  25. class MeanOnlyBatchNorm(nn.Module):
  26. def __init__(self, num_features, momentum=0.1):
  27. super(MeanOnlyBatchNorm, self).__init__()
  28. self.num_features = num_features
  29. self.momentum = momentum
  30. self.weight = Parameter(torch.Tensor(num_features))
  31. self.bias = Parameter(torch.Tensor(num_features))
  32. self.register_buffer('running_mean', torch.zeros(num_features))
  33. self.reset_parameters()
  34. def reset_parameters(self):
  35. self.running_mean.zero_()
  36. self.weight.data.uniform_()
  37. self.bias.data.zero_()
  38. def forward(self, inp):
  39. size = list(inp.size())
  40. gamma = self.weight.view(1, self.num_features, 1, 1)
  41. beta = self.bias.view(1, self.num_features, 1, 1)
  42. if self.training:
  43. avg = torch.mean(inp.view(size[0], self.num_features, -1), dim=2)
  44. self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * torch.mean(avg.data, dim=0)
  45. else:
  46. avg = Variable(self.running_mean.repeat(size[0], 1), requires_grad=False)
  47. output = inp - avg.view(size[0], size[1], 1, 1)
  48. output = output*gamma + beta
  49. return output