12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- from fastai.layers import *
- from fastai.torch_core import *
- from torch.nn.parameter import Parameter
- from torch.autograd import Variable
- #The code below is meant to be merged into fastaiv1 ideally
- def conv_layer2(ni:int, nf:int, ks:int=3, stride:int=1, padding:int=None, bias:bool=None, is_1d:bool=False,
- norm_type:Optional[NormType]=NormType.Batch, use_activ:bool=True, leaky:float=None,
- transpose:bool=False, init:Callable=nn.init.kaiming_normal_, self_attention:bool=False,
- extra_bn:bool=False):
- "Create a sequence of convolutional (`ni` to `nf`), ReLU (if `use_activ`) and batchnorm (if `bn`) layers."
- if padding is None: padding = (ks-1)//2 if not transpose else 0
- bn = norm_type in (NormType.Batch, NormType.BatchZero) or extra_bn==True
- if bias is None: bias = not bn
- conv_func = nn.ConvTranspose2d if transpose else nn.Conv1d if is_1d else nn.Conv2d
- conv = init_default(conv_func(ni, nf, kernel_size=ks, bias=bias, stride=stride, padding=padding), init)
- if norm_type==NormType.Weight: conv = weight_norm(conv)
- elif norm_type==NormType.Spectral: conv = spectral_norm(conv)
- layers = [conv]
- if use_activ: layers.append(relu(True, leaky=leaky))
- if bn: layers.append((nn.BatchNorm1d if is_1d else nn.BatchNorm2d)(nf))
-
- #TODO: Account for 1D
- #if norm_type==NormType.Weight: layers.append(MeanOnlyBatchNorm(nf))
- if self_attention: layers.append(SelfAttention(nf))
- return nn.Sequential(*layers)
- class MeanOnlyBatchNorm(nn.Module):
- def __init__(self, num_features, momentum=0.1):
- super(MeanOnlyBatchNorm, self).__init__()
- self.num_features = num_features
- self.momentum = momentum
- self.weight = Parameter(torch.Tensor(num_features))
- self.bias = Parameter(torch.Tensor(num_features))
- self.register_buffer('running_mean', torch.zeros(num_features))
- self.reset_parameters()
-
- def reset_parameters(self):
- self.running_mean.zero_()
- self.weight.data.uniform_()
- self.bias.data.zero_()
- def forward(self, inp):
- size = list(inp.size())
- gamma = self.weight.view(1, self.num_features, 1, 1)
- beta = self.bias.view(1, self.num_features, 1, 1)
- if self.training:
- avg = torch.mean(inp.view(size[0], self.num_features, -1), dim=2)
- self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * torch.mean(avg.data, dim=0)
- else:
- avg = Variable(self.running_mean.repeat(size[0], 1), requires_grad=False)
- output = inp - avg.view(size[0], size[1], 1, 1)
- output = output*gamma + beta
- return output
|