filters.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. from numpy import ndarray
  2. from abc import ABC, abstractmethod
  3. from .critics import colorize_crit_learner
  4. from fastai.core import *
  5. from fastai.vision import *
  6. from fastai.vision.image import *
  7. from fastai.vision.data import *
  8. from fastai import *
  9. import math
  10. from scipy import misc
  11. import cv2
  12. from PIL import Image as PilImage
  13. class IFilter(ABC):
  14. @abstractmethod
  15. def filter(
  16. self, orig_image: PilImage, filtered_image: PilImage, render_factor: int
  17. ) -> PilImage:
  18. pass
  19. class BaseFilter(IFilter):
  20. def __init__(self, learn: Learner):
  21. super().__init__()
  22. self.learn = learn
  23. self.norm, self.denorm = normalize_funcs(*imagenet_stats)
  24. def _transform(self, image: PilImage) -> PilImage:
  25. return image
  26. def _scale_to_square(self, orig: PilImage, targ: int) -> PilImage:
  27. # a simple stretch to fit a square really makes a big difference in rendering quality/consistency.
  28. # I've tried padding to the square as well (reflect, symetric, constant, etc). Not as good!
  29. targ_sz = (targ, targ)
  30. return orig.resize(targ_sz, resample=PIL.Image.BILINEAR)
  31. def _get_model_ready_image(self, orig: PilImage, sz: int) -> PilImage:
  32. result = self._scale_to_square(orig, sz)
  33. result = self._transform(result)
  34. return result
  35. def _model_process(self, orig: PilImage, sz: int) -> PilImage:
  36. model_image = self._get_model_ready_image(orig, sz)
  37. x = pil2tensor(model_image, np.float32)
  38. x.div_(255)
  39. x, y = self.norm((x, x), do_x=True)
  40. result = self.learn.pred_batch(
  41. ds_type=DatasetType.Valid, batch=(x[None].cuda(), y[None]), reconstruct=True
  42. )
  43. out = result[0]
  44. out = self.denorm(out.px, do_x=False)
  45. out = image2np(out * 255).astype(np.uint8)
  46. return PilImage.fromarray(out)
  47. def _unsquare(self, image: PilImage, orig: PilImage) -> PilImage:
  48. targ_sz = orig.size
  49. image = image.resize(targ_sz, resample=PIL.Image.BILINEAR)
  50. return image
  51. class ColorizerFilter(BaseFilter):
  52. def __init__(self, learn: Learner, map_to_orig: bool = True):
  53. super().__init__(learn=learn)
  54. self.render_base = 16
  55. self.map_to_orig = map_to_orig
  56. def filter(
  57. self, orig_image: PilImage, filtered_image: PilImage, render_factor: int
  58. ) -> PilImage:
  59. render_sz = render_factor * self.render_base
  60. model_image = self._model_process(orig=filtered_image, sz=render_sz)
  61. if self.map_to_orig:
  62. return self._post_process(model_image, orig_image)
  63. else:
  64. return self._post_process(model_image, filtered_image)
  65. def _transform(self, image: PilImage) -> PilImage:
  66. return image.convert('LA').convert('RGB')
  67. # This takes advantage of the fact that human eyes are much less sensitive to
  68. # imperfections in chrominance compared to luminance. This means we can
  69. # save a lot on memory and processing in the model, yet get a great high
  70. # resolution result at the end. This is primarily intended just for
  71. # inference
  72. def _post_process(self, raw_color: PilImage, orig: PilImage) -> PilImage:
  73. raw_color = self._unsquare(raw_color, orig)
  74. color_np = np.asarray(raw_color)
  75. orig_np = np.asarray(orig)
  76. color_yuv = cv2.cvtColor(color_np, cv2.COLOR_BGR2YUV)
  77. # do a black and white transform first to get better luminance values
  78. orig_yuv = cv2.cvtColor(orig_np, cv2.COLOR_BGR2YUV)
  79. hires = np.copy(orig_yuv)
  80. hires[:, :, 1:3] = color_yuv[:, :, 1:3]
  81. final = cv2.cvtColor(hires, cv2.COLOR_YUV2BGR)
  82. final = PilImage.fromarray(final)
  83. return final
  84. class MasterFilter(BaseFilter):
  85. def __init__(self, filters: [IFilter], render_factor: int):
  86. self.filters = filters
  87. self.render_factor = render_factor
  88. def filter(
  89. self, orig_image: PilImage, filtered_image: PilImage, render_factor: int = None
  90. ) -> PilImage:
  91. render_factor = self.render_factor if render_factor is None else render_factor
  92. for filter in self.filters:
  93. filtered_image = filter.filter(orig_image, filtered_image, render_factor)
  94. return filtered_image