preact_resnet.py 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. '''Pre-activation ResNet in PyTorch.
  2. Reference:
  3. [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
  4. Identity Mappings in Deep Residual Networks. arXiv:1603.05027
  5. '''
  6. import torch
  7. import torch.nn as nn
  8. import torch.nn.functional as F
  9. from torch.autograd import Variable
  10. class PreActBlock(nn.Module):
  11. '''Pre-activation version of the BasicBlock.'''
  12. expansion = 1
  13. def __init__(self, in_planes, planes, stride=1):
  14. super(PreActBlock, self).__init__()
  15. self.bn1 = nn.BatchNorm2d(in_planes)
  16. self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
  17. self.bn2 = nn.BatchNorm2d(planes)
  18. self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
  19. if stride != 1 or in_planes != self.expansion*planes:
  20. self.shortcut = nn.Sequential(
  21. nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)
  22. )
  23. def forward(self, x):
  24. out = F.relu(self.bn1(x))
  25. shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
  26. out = self.conv1(out)
  27. out = self.conv2(F.relu(self.bn2(out)))
  28. out += shortcut
  29. return out
  30. class PreActBottleneck(nn.Module):
  31. '''Pre-activation version of the original Bottleneck module.'''
  32. expansion = 4
  33. def __init__(self, in_planes, planes, stride=1):
  34. super(PreActBottleneck, self).__init__()
  35. self.bn1 = nn.BatchNorm2d(in_planes)
  36. self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
  37. self.bn2 = nn.BatchNorm2d(planes)
  38. self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
  39. self.bn3 = nn.BatchNorm2d(planes)
  40. self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
  41. if stride != 1 or in_planes != self.expansion*planes:
  42. self.shortcut = nn.Sequential(
  43. nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)
  44. )
  45. def forward(self, x):
  46. out = F.relu(self.bn1(x))
  47. shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
  48. out = self.conv1(out)
  49. out = self.conv2(F.relu(self.bn2(out)))
  50. out = self.conv3(F.relu(self.bn3(out)))
  51. out += shortcut
  52. return out
  53. class PreActResNet(nn.Module):
  54. def __init__(self, block, num_blocks, num_classes=10):
  55. super(PreActResNet, self).__init__()
  56. self.in_planes = 64
  57. self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
  58. self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
  59. self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
  60. self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
  61. self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
  62. self.linear = nn.Linear(512*block.expansion, num_classes)
  63. def _make_layer(self, block, planes, num_blocks, stride):
  64. strides = [stride] + [1]*(num_blocks-1)
  65. layers = []
  66. for stride in strides:
  67. layers.append(block(self.in_planes, planes, stride))
  68. self.in_planes = planes * block.expansion
  69. return nn.Sequential(*layers)
  70. def forward(self, x):
  71. out = self.conv1(x)
  72. out = self.layer1(out)
  73. out = self.layer2(out)
  74. out = self.layer3(out)
  75. out = self.layer4(out)
  76. out = F.adaptive_max_pool2d(out, 1)
  77. out = out.view(out.size(0), -1)
  78. return F.log_softmax(self.linear(out))
  79. def PreActResNet18(): return PreActResNet(PreActBlock, [2,2,2,2])
  80. def PreActResNet34(): return PreActResNet(PreActBlock, [3,4,6,3])
  81. def PreActResNet50(): return PreActResNet(PreActBottleneck, [3,4,6,3])
  82. def PreActResNet101(): return PreActResNet(PreActBottleneck, [3,4,23,3])
  83. def PreActResNet152(): return PreActResNet(PreActBottleneck, [3,8,36,3])