123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- import os, sys, time
- import random
- import torch
- import numpy as np
- import matplotlib
- matplotlib.use('agg')
- import matplotlib.pyplot as plt
- class AverageMeter(object):
- """Computes and stores the average and current value"""
- def __init__(self):
- self.reset()
- def reset(self):
- self.val = 0
- self.avg = 0
- self.sum = 0
- self.count = 0
- def update(self, val, n=1):
- self.val = val
- self.sum += val * n
- self.count += n
- self.avg = self.sum / self.count
- class RecorderMeter(object):
- """Computes and stores the minimum loss value and its epoch index"""
- def __init__(self, total_epoch):
- self.reset(total_epoch)
- def reset(self, total_epoch):
- assert total_epoch > 0
- self.total_epoch = total_epoch
- self.current_epoch = 0
- self.epoch_losses = np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
- self.epoch_losses = self.epoch_losses - 1
- self.epoch_accuracy= np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
- self.epoch_accuracy= self.epoch_accuracy
- def update(self, idx, train_loss, train_acc, val_loss, val_acc):
- assert idx >= 0 and idx < self.total_epoch, 'total_epoch : {} , but update with the {} index'.format(self.total_epoch, idx)
- self.epoch_losses [idx, 0] = train_loss
- self.epoch_losses [idx, 1] = val_loss
- self.epoch_accuracy[idx, 0] = train_acc
- self.epoch_accuracy[idx, 1] = val_acc
- self.current_epoch = idx + 1
- return self.max_accuracy(False) == val_acc
- def max_accuracy(self, istrain):
- if self.current_epoch <= 0: return 0
- if istrain: return self.epoch_accuracy[:self.current_epoch, 0].max()
- else: return self.epoch_accuracy[:self.current_epoch, 1].max()
-
- def plot_curve(self, save_path):
- title = 'the accuracy/loss curve of train/val'
- dpi = 80
- width, height = 1200, 800
- legend_fontsize = 10
- scale_distance = 48.8
- figsize = width / float(dpi), height / float(dpi)
- fig = plt.figure(figsize=figsize)
- x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
- y_axis = np.zeros(self.total_epoch)
- plt.xlim(0, self.total_epoch)
- plt.ylim(0, 100)
- interval_y = 5
- interval_x = 5
- plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
- plt.yticks(np.arange(0, 100 + interval_y, interval_y))
- plt.grid()
- plt.title(title, fontsize=20)
- plt.xlabel('the training epoch', fontsize=16)
- plt.ylabel('accuracy', fontsize=16)
-
- y_axis[:] = self.epoch_accuracy[:, 0]
- plt.plot(x_axis, y_axis, color='g', linestyle='-', label='train-accuracy', lw=2)
- plt.legend(loc=4, fontsize=legend_fontsize)
- y_axis[:] = self.epoch_accuracy[:, 1]
- plt.plot(x_axis, y_axis, color='y', linestyle='-', label='valid-accuracy', lw=2)
- plt.legend(loc=4, fontsize=legend_fontsize)
-
- y_axis[:] = self.epoch_losses[:, 0]
- plt.plot(x_axis, y_axis*50, color='g', linestyle=':', label='train-loss-x50', lw=2)
- plt.legend(loc=4, fontsize=legend_fontsize)
- y_axis[:] = self.epoch_losses[:, 1]
- plt.plot(x_axis, y_axis*50, color='y', linestyle=':', label='valid-loss-x50', lw=2)
- plt.legend(loc=4, fontsize=legend_fontsize)
- if save_path is not None:
- fig.savefig(save_path, dpi=dpi, bbox_inches='tight')
- print ('---- save figure {} into {}'.format(title, save_path))
- plt.close(fig)
-
- def time_string():
- ISOTIMEFORMAT='%Y-%m-%d %X'
- string = '[{}]'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
- return string
- def convert_secs2time(epoch_time):
- need_hour = int(epoch_time / 3600)
- need_mins = int((epoch_time - 3600*need_hour) / 60)
- need_secs = int(epoch_time - 3600*need_hour - 60*need_mins)
- return need_hour, need_mins, need_secs
- def time_file_str():
- ISOTIMEFORMAT='%Y-%m-%d'
- string = '{}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
- return string + '-{}'.format(random.randint(1, 10000))
|