123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358 |
- import torch
- import torch.nn as nn
- import torch.utils.model_zoo as model_zoo
- import os
- import sys
- model_urls = {
- 'imagenet': 'http://data.lip6.fr/cadene/pretrainedmodels/inceptionresnetv2-520b38e4.pth'
- }
- class BasicConv2d(nn.Module):
- def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0):
- super(BasicConv2d, self).__init__()
- self.conv = nn.Conv2d(in_planes, out_planes,
- kernel_size=kernel_size, stride=stride,
- padding=padding, bias=False) # verify bias false
- self.bn = nn.BatchNorm2d(out_planes,
- eps=0.001, # value found in tensorflow
- momentum=0.1, # default pytorch value
- affine=True)
- self.relu = nn.ReLU(inplace=False)
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- x = self.relu(x)
- return x
- class Mixed_5b(nn.Module):
- def __init__(self):
- super(Mixed_5b, self).__init__()
- self.branch0 = BasicConv2d(192, 96, kernel_size=1, stride=1)
- self.branch1 = nn.Sequential(
- BasicConv2d(192, 48, kernel_size=1, stride=1),
- BasicConv2d(48, 64, kernel_size=5, stride=1, padding=2)
- )
- self.branch2 = nn.Sequential(
- BasicConv2d(192, 64, kernel_size=1, stride=1),
- BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1),
- BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1)
- )
- self.branch3 = nn.Sequential(
- nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
- BasicConv2d(192, 64, kernel_size=1, stride=1)
- )
- def forward(self, x):
- x0 = self.branch0(x)
- x1 = self.branch1(x)
- x2 = self.branch2(x)
- x3 = self.branch3(x)
- out = torch.cat((x0, x1, x2, x3), 1)
- return out
- class Block35(nn.Module):
- def __init__(self, scale=1.0):
- super(Block35, self).__init__()
- self.scale = scale
- self.branch0 = BasicConv2d(320, 32, kernel_size=1, stride=1)
- self.branch1 = nn.Sequential(
- BasicConv2d(320, 32, kernel_size=1, stride=1),
- BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)
- )
- self.branch2 = nn.Sequential(
- BasicConv2d(320, 32, kernel_size=1, stride=1),
- BasicConv2d(32, 48, kernel_size=3, stride=1, padding=1),
- BasicConv2d(48, 64, kernel_size=3, stride=1, padding=1)
- )
- self.conv2d = nn.Conv2d(128, 320, kernel_size=1, stride=1)
- self.relu = nn.ReLU(inplace=False)
- def forward(self, x):
- x0 = self.branch0(x)
- x1 = self.branch1(x)
- x2 = self.branch2(x)
- out = torch.cat((x0, x1, x2), 1)
- out = self.conv2d(out)
- out = out * self.scale + x
- out = self.relu(out)
- return out
- class Mixed_6a(nn.Module):
- def __init__(self):
- super(Mixed_6a, self).__init__()
-
- self.branch0 = BasicConv2d(320, 384, kernel_size=3, stride=2)
- self.branch1 = nn.Sequential(
- BasicConv2d(320, 256, kernel_size=1, stride=1),
- BasicConv2d(256, 256, kernel_size=3, stride=1, padding=1),
- BasicConv2d(256, 384, kernel_size=3, stride=2)
- )
- self.branch2 = nn.MaxPool2d(3, stride=2)
- def forward(self, x):
- x0 = self.branch0(x)
- x1 = self.branch1(x)
- x2 = self.branch2(x)
- out = torch.cat((x0, x1, x2), 1)
- return out
- class Block17(nn.Module):
- def __init__(self, scale=1.0):
- super(Block17, self).__init__()
- self.scale = scale
- self.branch0 = BasicConv2d(1088, 192, kernel_size=1, stride=1)
- self.branch1 = nn.Sequential(
- BasicConv2d(1088, 128, kernel_size=1, stride=1),
- BasicConv2d(128, 160, kernel_size=(1,7), stride=1, padding=(0,3)),
- BasicConv2d(160, 192, kernel_size=(7,1), stride=1, padding=(3,0))
- )
- self.conv2d = nn.Conv2d(384, 1088, kernel_size=1, stride=1)
- self.relu = nn.ReLU(inplace=False)
- def forward(self, x):
- x0 = self.branch0(x)
- x1 = self.branch1(x)
- out = torch.cat((x0, x1), 1)
- out = self.conv2d(out)
- out = out * self.scale + x
- out = self.relu(out)
- return out
- class Mixed_7a(nn.Module):
- def __init__(self):
- super(Mixed_7a, self).__init__()
-
- self.branch0 = nn.Sequential(
- BasicConv2d(1088, 256, kernel_size=1, stride=1),
- BasicConv2d(256, 384, kernel_size=3, stride=2)
- )
- self.branch1 = nn.Sequential(
- BasicConv2d(1088, 256, kernel_size=1, stride=1),
- BasicConv2d(256, 288, kernel_size=3, stride=2)
- )
- self.branch2 = nn.Sequential(
- BasicConv2d(1088, 256, kernel_size=1, stride=1),
- BasicConv2d(256, 288, kernel_size=3, stride=1, padding=1),
- BasicConv2d(288, 320, kernel_size=3, stride=2)
- )
- self.branch3 = nn.MaxPool2d(3, stride=2)
- def forward(self, x):
- x0 = self.branch0(x)
- x1 = self.branch1(x)
- x2 = self.branch2(x)
- x3 = self.branch3(x)
- out = torch.cat((x0, x1, x2, x3), 1)
- return out
- class Block8(nn.Module):
- def __init__(self, scale=1.0, noReLU=False):
- super(Block8, self).__init__()
- self.scale = scale
- self.noReLU = noReLU
- self.branch0 = BasicConv2d(2080, 192, kernel_size=1, stride=1)
- self.branch1 = nn.Sequential(
- BasicConv2d(2080, 192, kernel_size=1, stride=1),
- BasicConv2d(192, 224, kernel_size=(1,3), stride=1, padding=(0,1)),
- BasicConv2d(224, 256, kernel_size=(3,1), stride=1, padding=(1,0))
- )
- self.conv2d = nn.Conv2d(448, 2080, kernel_size=1, stride=1)
- if not self.noReLU:
- self.relu = nn.ReLU(inplace=False)
- def forward(self, x):
- x0 = self.branch0(x)
- x1 = self.branch1(x)
- out = torch.cat((x0, x1), 1)
- out = self.conv2d(out)
- out = out * self.scale + x
- if not self.noReLU:
- out = self.relu(out)
- return out
- class InceptionResnetV2(nn.Module):
- def __init__(self, num_classes=1001):
- super(InceptionResnetV2, self).__init__()
- # Special attributs
- self.input_space = None
- self.input_size = (299, 299, 3)
- self.mean = None
- self.std = None
- # Modules
- self.conv2d_1a = BasicConv2d(3, 32, kernel_size=3, stride=2)
- self.conv2d_2a = BasicConv2d(32, 32, kernel_size=3, stride=1)
- self.conv2d_2b = BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1)
- self.maxpool_3a = nn.MaxPool2d(3, stride=2)
- self.conv2d_3b = BasicConv2d(64, 80, kernel_size=1, stride=1)
- self.conv2d_4a = BasicConv2d(80, 192, kernel_size=3, stride=1)
- self.maxpool_5a = nn.MaxPool2d(3, stride=2)
- self.mixed_5b = Mixed_5b()
- self.repeat = nn.Sequential(
- Block35(scale=0.17),
- Block35(scale=0.17),
- Block35(scale=0.17),
- Block35(scale=0.17),
- Block35(scale=0.17),
- Block35(scale=0.17),
- Block35(scale=0.17),
- Block35(scale=0.17),
- Block35(scale=0.17),
- Block35(scale=0.17)
- )
- self.mixed_6a = Mixed_6a()
- self.repeat_1 = nn.Sequential(
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10),
- Block17(scale=0.10)
- )
- self.mixed_7a = Mixed_7a()
- self.repeat_2 = nn.Sequential(
- Block8(scale=0.20),
- Block8(scale=0.20),
- Block8(scale=0.20),
- Block8(scale=0.20),
- Block8(scale=0.20),
- Block8(scale=0.20),
- Block8(scale=0.20),
- Block8(scale=0.20),
- Block8(scale=0.20)
- )
- self.block8 = Block8(noReLU=True)
- self.conv2d_7b = BasicConv2d(2080, 1536, kernel_size=1, stride=1)
- self.avgpool_1a = nn.AvgPool2d(8, count_include_pad=False)
- self.last_linear = nn.Linear(1536, num_classes)
- def features(self, input):
- x = self.conv2d_1a(input)
- x = self.conv2d_2a(x)
- x = self.conv2d_2b(x)
- x = self.maxpool_3a(x)
- x = self.conv2d_3b(x)
- x = self.conv2d_4a(x)
- x = self.maxpool_5a(x)
- x = self.mixed_5b(x)
- x = self.repeat(x)
- x = self.mixed_6a(x)
- x = self.repeat_1(x)
- x = self.mixed_7a(x)
- x = self.repeat_2(x)
- x = self.block8(x)
- x = self.conv2d_7b(x)
- return x
- def logits(self, features):
- x = self.avgpool_1a(features)
- x = x.view(x.size(0), -1)
- x = self.last_linear(x)
- return x
- def forward(self, input):
- x = self.features(input)
- x = self.logits(x)
- return x
- def inceptionresnetv2(num_classes=1000, pretrained='imagenet'):
- r"""InceptionResNetV2 model architecture from the
- `"InceptionV4, Inception-ResNet..." <https://arxiv.org/abs/1602.07261>`_ paper.
- """
- if pretrained:
- settings = pretrained_settings['inceptionresnetv2'][pretrained]
- assert num_classes == settings['num_classes'], \
- "num_classes should be {}, but is {}".format(settings['num_classes'], num_classes)
- # both 'imagenet'&'imagenet+background' are loaded from same parameters
- model = InceptionResNetV2(num_classes=1001)
- model.load_state_dict(model_zoo.load_url(settings['url']))
-
- if pretrained == 'imagenet':
- new_last_linear = nn.Linear(1536, 1000)
- new_last_linear.weight.data = model.last_linear.weight.data[1:]
- new_last_linear.bias.data = model.last_linear.bias.data[1:]
- model.last_linear = new_last_linear
-
- model.input_space = settings['input_space']
- model.input_size = settings['input_size']
- model.input_range = settings['input_range']
-
- model.mean = settings['mean']
- model.std = settings['std']
- else:
- model = InceptionResNetV2(num_classes=num_classes)
- return model
- '''
- TEST
- Run this code with:
- ```
- cd $HOME/pretrained-models.pytorch
- python -m pretrainedmodels.inceptionresnetv2
- ```
- '''
- if __name__ == '__main__':
- assert inceptionresnetv2(num_classes=10, pretrained=None)
- print('success')
- assert inceptionresnetv2(num_classes=1000, pretrained='imagenet')
- print('success')
- assert inceptionresnetv2(num_classes=1001, pretrained='imagenet+background')
- print('success')
- # fail
- assert inceptionresnetv2(num_classes=1001, pretrained='imagenet')
|