123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442 |
- import torch
- import torch.nn as nn
- import torch.utils.model_zoo as model_zoo
- import os
- import sys
- model_urls = {
- 'imagenet': 'https://s3.amazonaws.com/pytorch/models/inceptionv4-58153ba9.pth'
- }
- class BasicConv2d(nn.Module):
- def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0):
- super(BasicConv2d, self).__init__()
- self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) # verify bias false
- self.bn = nn.BatchNorm2d(out_planes)
- self.relu = nn.ReLU(inplace=True)
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- x = self.relu(x)
- return x
- class Mixed_3a(nn.Module):
- def __init__(self):
- super(Mixed_3a, self).__init__()
- self.maxpool = nn.MaxPool2d(3, stride=2)
- self.conv = BasicConv2d(64, 96, kernel_size=3, stride=2)
- def forward(self, x):
- x0 = self.maxpool(x)
- x1 = self.conv(x)
- out = torch.cat((x0, x1), 1)
- return out
- class Mixed_4a(nn.Module):
- def __init__(self):
- super(Mixed_4a, self).__init__()
- self.block0 = nn.Sequential(
- BasicConv2d(160, 64, kernel_size=1, stride=1),
- BasicConv2d(64, 96, kernel_size=3, stride=1)
- )
- self.block1 = nn.Sequential(
- BasicConv2d(160, 64, kernel_size=1, stride=1),
- BasicConv2d(64, 64, kernel_size=(1,7), stride=1, padding=(0,3)),
- BasicConv2d(64, 64, kernel_size=(7,1), stride=1, padding=(3,0)),
- BasicConv2d(64, 96, kernel_size=(3,3), stride=1)
- )
- def forward(self, x):
- x0 = self.block0(x)
- x1 = self.block1(x)
- out = torch.cat((x0, x1), 1)
- return out
- class Mixed_5a(nn.Module):
- def __init__(self):
- super(Mixed_5a, self).__init__()
- self.conv = BasicConv2d(192, 192, kernel_size=3, stride=2)
- self.maxpool = nn.MaxPool2d(3, stride=2)
- def forward(self, x):
- x0 = self.conv(x)
- x1 = self.maxpool(x)
- out = torch.cat((x0, x1), 1)
- return out
- class Inception_A(nn.Module):
- def __init__(self):
- super(Inception_A, self).__init__()
- self.block0 = BasicConv2d(384, 96, kernel_size=1, stride=1)
- self.block1 = nn.Sequential(
- BasicConv2d(384, 64, kernel_size=1, stride=1),
- BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1)
- )
- self.block2 = nn.Sequential(
- BasicConv2d(384, 64, kernel_size=1, stride=1),
- BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1),
- BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1)
- )
- self.block3 = nn.Sequential(
- nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
- BasicConv2d(384, 96, kernel_size=1, stride=1)
- )
- def forward(self, x):
- x0 = self.block0(x)
- x1 = self.block1(x)
- x2 = self.block2(x)
- x3 = self.block3(x)
- out = torch.cat((x0, x1, x2, x3), 1)
- return out
- class Reduction_A(nn.Module):
- def __init__(self):
- super(Reduction_A, self).__init__()
- self.block0 = BasicConv2d(384, 384, kernel_size=3, stride=2)
- self.block1 = nn.Sequential(
- BasicConv2d(384, 192, kernel_size=1, stride=1),
- BasicConv2d(192, 224, kernel_size=3, stride=1, padding=1),
- BasicConv2d(224, 256, kernel_size=3, stride=2)
- )
-
- self.block2 = nn.MaxPool2d(3, stride=2)
- def forward(self, x):
- x0 = self.block0(x)
- x1 = self.block1(x)
- x2 = self.block2(x)
- out = torch.cat((x0, x1, x2), 1)
- return out
- class Inception_B(nn.Module):
- def __init__(self):
- super(Inception_B, self).__init__()
- self.block0 = BasicConv2d(1024, 384, kernel_size=1, stride=1)
-
- self.block1 = nn.Sequential(
- BasicConv2d(1024, 192, kernel_size=1, stride=1),
- BasicConv2d(192, 224, kernel_size=(1,7), stride=1, padding=(0,3)),
- BasicConv2d(224, 256, kernel_size=(7,1), stride=1, padding=(3,0))
- )
- self.block2 = nn.Sequential(
- BasicConv2d(1024, 192, kernel_size=1, stride=1),
- BasicConv2d(192, 192, kernel_size=(7,1), stride=1, padding=(3,0)),
- BasicConv2d(192, 224, kernel_size=(1,7), stride=1, padding=(0,3)),
- BasicConv2d(224, 224, kernel_size=(7,1), stride=1, padding=(3,0)),
- BasicConv2d(224, 256, kernel_size=(1,7), stride=1, padding=(0,3))
- )
- self.block3 = nn.Sequential(
- nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
- BasicConv2d(1024, 128, kernel_size=1, stride=1)
- )
- def forward(self, x):
- x0 = self.block0(x)
- x1 = self.block1(x)
- x2 = self.block2(x)
- x3 = self.block3(x)
- out = torch.cat((x0, x1, x2, x3), 1)
- return out
- class Reduction_B(nn.Module):
- def __init__(self):
- super(Reduction_B, self).__init__()
- self.block0 = nn.Sequential(
- BasicConv2d(1024, 192, kernel_size=1, stride=1),
- BasicConv2d(192, 192, kernel_size=3, stride=2)
- )
- self.block1 = nn.Sequential(
- BasicConv2d(1024, 256, kernel_size=1, stride=1),
- BasicConv2d(256, 256, kernel_size=(1,7), stride=1, padding=(0,3)),
- BasicConv2d(256, 320, kernel_size=(7,1), stride=1, padding=(3,0)),
- BasicConv2d(320, 320, kernel_size=3, stride=2)
- )
- self.block2 = nn.MaxPool2d(3, stride=2)
- def forward(self, x):
- x0 = self.block0(x)
- x1 = self.block1(x)
- x2 = self.block2(x)
- out = torch.cat((x0, x1, x2), 1)
- return out
- class Inception_C(nn.Module):
- def __init__(self):
- super(Inception_C, self).__init__()
- self.block0 = BasicConv2d(1536, 256, kernel_size=1, stride=1)
-
- self.block1_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1)
- self.block1_1a = BasicConv2d(384, 256, kernel_size=(1,3), stride=1, padding=(0,1))
- self.block1_1b = BasicConv2d(384, 256, kernel_size=(3,1), stride=1, padding=(1,0))
-
- self.block2_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1)
- self.block2_1 = BasicConv2d(384, 448, kernel_size=(3,1), stride=1, padding=(1,0))
- self.block2_2 = BasicConv2d(448, 512, kernel_size=(1,3), stride=1, padding=(0,1))
- self.block2_3a = BasicConv2d(512, 256, kernel_size=(1,3), stride=1, padding=(0,1))
- self.block2_3b = BasicConv2d(512, 256, kernel_size=(3,1), stride=1, padding=(1,0))
-
- self.block3 = nn.Sequential(
- nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
- BasicConv2d(1536, 256, kernel_size=1, stride=1)
- )
- def forward(self, x):
- x0 = self.block0(x)
-
- x1_0 = self.block1_0(x)
- x1_1a = self.block1_1a(x1_0)
- x1_1b = self.block1_1b(x1_0)
- x1 = torch.cat((x1_1a, x1_1b), 1)
- x2_0 = self.block2_0(x)
- x2_1 = self.block2_1(x2_0)
- x2_2 = self.block2_2(x2_1)
- x2_3a = self.block2_3a(x2_2)
- x2_3b = self.block2_3b(x2_2)
- x2 = torch.cat((x2_3a, x2_3b), 1)
- x3 = self.block3(x)
- out = torch.cat((x0, x1, x2, x3), 1)
- return out
- class InceptionV4(nn.Module):
- def __init__(self, num_classes=1001):
- super(InceptionV4, self).__init__()
- self.features = nn.Sequential(
- BasicConv2d(3, 32, kernel_size=3, stride=2),
- BasicConv2d(32, 32, kernel_size=3, stride=1),
- BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1),
- Mixed_3a(),
- Mixed_4a(),
- Mixed_5a(),
- Inception_A(),
- Inception_A(),
- Inception_A(),
- Inception_A(),
- Reduction_A(), # Mixed_6a
- Inception_B(),
- Inception_B(),
- Inception_B(),
- Inception_B(),
- Inception_B(),
- Inception_B(),
- Inception_B(),
- Reduction_B(), # Mixed_7a
- Inception_C(),
- Inception_C(),
- Inception_C(),
- nn.AdaptiveAvgPool2d((1,1))
- )
- self.classif = nn.Linear(1536, num_classes)
- def forward(self, x):
- x = self.features(x)
- x = x.view(x.size(0), -1)
- x = self.classif(x)
- return x
- def inceptionv4(pretrained=True):
- r"""InceptionV4 model architecture from the
- `"Inception-v4, Inception-ResNet..." <https://arxiv.org/abs/1602.07261>`_ paper.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = InceptionV4()
- if pretrained:
- model.load_state_dict(model_zoo.load_url(model_urls['imagenet']))
- return model
- ######################################################################
- ## Load parameters from HDF5 to Dict
- ######################################################################
- def load_conv2d(state_dict, name_pth, name_tf):
- h5f = h5py.File('dump/InceptionV4/'+name_tf+'.h5', 'r')
- state_dict[name_pth+'.conv.weight'] = torch.from_numpy(h5f['weights'][()]).permute(3, 2, 0, 1)
- out_planes = state_dict[name_pth+'.conv.weight'].size(0)
- state_dict[name_pth+'.bn.weight'] = torch.ones(out_planes)
- state_dict[name_pth+'.bn.bias'] = torch.from_numpy(h5f['beta'][()])
- state_dict[name_pth+'.bn.running_mean'] = torch.from_numpy(h5f['mean'][()])
- state_dict[name_pth+'.bn.running_var'] = torch.from_numpy(h5f['var'][()])
- h5f.close()
- def load_linear(state_dict, name_pth, name_tf):
- h5f = h5py.File('dump/InceptionV4/'+name_tf+'.h5', 'r')
- state_dict[name_pth+'.weight'] = torch.from_numpy(h5f['weights'][()]).t()
- state_dict[name_pth+'.bias'] = torch.from_numpy(h5f['biases'][()])
- h5f.close()
- def load_mixed_4a_7a(state_dict, name_pth, name_tf):
- load_conv2d(state_dict, name_pth+'.branch0.0', name_tf+'/Branch_0/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth+'.branch0.1', name_tf+'/Branch_0/Conv2d_1a_3x3')
- load_conv2d(state_dict, name_pth+'.branch1.0', name_tf+'/Branch_1/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth+'.branch1.1', name_tf+'/Branch_1/Conv2d_0b_1x7')
- load_conv2d(state_dict, name_pth+'.branch1.2', name_tf+'/Branch_1/Conv2d_0c_7x1')
- load_conv2d(state_dict, name_pth+'.branch1.3', name_tf+'/Branch_1/Conv2d_1a_3x3')
- def load_mixed_5(state_dict, name_pth, name_tf):
- load_conv2d(state_dict, name_pth+'.branch0', name_tf+'/Branch_0/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth+'.branch1.0', name_tf+'/Branch_1/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth+'.branch1.1', name_tf+'/Branch_1/Conv2d_0b_3x3')
- load_conv2d(state_dict, name_pth+'.branch2.0', name_tf+'/Branch_2/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth+'.branch2.1', name_tf+'/Branch_2/Conv2d_0b_3x3')
- load_conv2d(state_dict, name_pth+'.branch2.2', name_tf+'/Branch_2/Conv2d_0c_3x3')
- load_conv2d(state_dict, name_pth+'.branch3.1', name_tf+'/Branch_3/Conv2d_0b_1x1')
- def load_mixed_6(state_dict, name_pth, name_tf):
- load_conv2d(state_dict, name_pth+'.branch0', name_tf+'/Branch_0/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth+'.branch1.0', name_tf+'/Branch_1/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth+'.branch1.1', name_tf+'/Branch_1/Conv2d_0b_1x7')
- load_conv2d(state_dict, name_pth+'.branch1.2', name_tf+'/Branch_1/Conv2d_0c_7x1')
- load_conv2d(state_dict, name_pth+'.branch2.0', name_tf+'/Branch_2/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth+'.branch2.1', name_tf+'/Branch_2/Conv2d_0b_7x1')
- load_conv2d(state_dict, name_pth+'.branch2.2', name_tf+'/Branch_2/Conv2d_0c_1x7')
- load_conv2d(state_dict, name_pth+'.branch2.3', name_tf+'/Branch_2/Conv2d_0d_7x1')
- load_conv2d(state_dict, name_pth+'.branch2.4', name_tf+'/Branch_2/Conv2d_0e_1x7')
- load_conv2d(state_dict, name_pth+'.branch3.1', name_tf+'/Branch_3/Conv2d_0b_1x1')
- def load_mixed_7(state_dict, name_pth, name_tf):
- load_conv2d(state_dict, name_pth+'.branch0', name_tf+'/Branch_0/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth+'.branch1_0', name_tf+'/Branch_1/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth+'.branch1_1a', name_tf+'/Branch_1/Conv2d_0b_1x3')
- load_conv2d(state_dict, name_pth+'.branch1_1b', name_tf+'/Branch_1/Conv2d_0c_3x1')
- load_conv2d(state_dict, name_pth+'.branch2_0', name_tf+'/Branch_2/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth+'.branch2_1', name_tf+'/Branch_2/Conv2d_0b_3x1')
- load_conv2d(state_dict, name_pth+'.branch2_2', name_tf+'/Branch_2/Conv2d_0c_1x3')
- load_conv2d(state_dict, name_pth+'.branch2_3a', name_tf+'/Branch_2/Conv2d_0d_1x3')
- load_conv2d(state_dict, name_pth+'.branch2_3b', name_tf+'/Branch_2/Conv2d_0e_3x1')
- load_conv2d(state_dict, name_pth+'.branch3.1', name_tf+'/Branch_3/Conv2d_0b_1x1')
- def load():
- state_dict={}
-
- load_conv2d(state_dict, name_pth='features.0', name_tf='Conv2d_1a_3x3')
- load_conv2d(state_dict, name_pth='features.1', name_tf='Conv2d_2a_3x3')
- load_conv2d(state_dict, name_pth='features.2', name_tf='Conv2d_2b_3x3')
-
- load_conv2d(state_dict, name_pth='features.3.conv', name_tf='Mixed_3a/Branch_1/Conv2d_0a_3x3')
- load_mixed_4a_7a(state_dict, name_pth='features.4', name_tf='Mixed_4a')
- load_conv2d(state_dict, name_pth='features.5.conv', name_tf='Mixed_5a/Branch_0/Conv2d_1a_3x3')
- load_mixed_5(state_dict, name_pth='features.6', name_tf='Mixed_5b')
- load_mixed_5(state_dict, name_pth='features.7', name_tf='Mixed_5c')
- load_mixed_5(state_dict, name_pth='features.8', name_tf='Mixed_5d')
- load_mixed_5(state_dict, name_pth='features.9', name_tf='Mixed_5e')
- load_conv2d(state_dict, name_pth='features.10.branch0', name_tf='Mixed_6a/Branch_0/Conv2d_1a_3x3')
- load_conv2d(state_dict, name_pth='features.10.branch1.0', name_tf='Mixed_6a/Branch_1/Conv2d_0a_1x1')
- load_conv2d(state_dict, name_pth='features.10.branch1.1', name_tf='Mixed_6a/Branch_1/Conv2d_0b_3x3')
- load_conv2d(state_dict, name_pth='features.10.branch1.2', name_tf='Mixed_6a/Branch_1/Conv2d_1a_3x3')
- load_mixed_6(state_dict, name_pth='features.11', name_tf='Mixed_6b')
- load_mixed_6(state_dict, name_pth='features.12', name_tf='Mixed_6c')
- load_mixed_6(state_dict, name_pth='features.13', name_tf='Mixed_6d')
- load_mixed_6(state_dict, name_pth='features.14', name_tf='Mixed_6e')
- load_mixed_6(state_dict, name_pth='features.15', name_tf='Mixed_6f')
- load_mixed_6(state_dict, name_pth='features.16', name_tf='Mixed_6g')
- load_mixed_6(state_dict, name_pth='features.17', name_tf='Mixed_6h')
- load_mixed_4a_7a(state_dict, name_pth='features.18', name_tf='Mixed_7a')
- load_mixed_7(state_dict, name_pth='features.19', name_tf='Mixed_7b')
- load_mixed_7(state_dict, name_pth='features.20', name_tf='Mixed_7c')
- load_mixed_7(state_dict, name_pth='features.21', name_tf='Mixed_7d')
- load_linear(state_dict, name_pth='classif', name_tf='Logits')
- return state_dict
- ######################################################################
- ## Test
- ######################################################################
- def test(model):
- model.eval()
- from scipy import misc
- img = misc.imread('lena_299.png')
- inputs = torch.zeros(1,299,299,3)
- inputs[0] = torch.from_numpy(img)
- inputs.transpose_(1,3)
- inputs.transpose_(2,3)
- # 1, 3, 299, 299
- outputs = model.forward(torch.autograd.Variable(inputs))
- h5f = h5py.File('dump/InceptionV4/Logits.h5', 'r')
- outputs_tf = torch.from_numpy(h5f['out'][()])
- h5f.close()
- outputs = torch.nn.functional.softmax(outputs)
- print(torch.dist(outputs.data, outputs_tf))
- return outputs
-
- def test_conv2d(module, name):
- #global output_tf
- h5f = h5py.File('dump/InceptionV4/'+name+'.h5', 'r')
- output_tf = torch.from_numpy(h5f['relu_out'][()])
- output_tf.transpose_(1,3)
- output_tf.transpose_(2,3)
- h5f.close()
- def test_dist(self, input, output):
- print(name, torch.dist(output.data, output_tf))
- module.register_forward_hook(test_dist)
- def test_mixed_4a_7a(module, name):
- test_conv2d(module.branch0[0], name+'/Branch_0/Conv2d_0a_1x1')
- test_conv2d(module.branch0[1], name+'/Branch_0/Conv2d_1a_3x3')
- test_conv2d(module.branch1[0], name+'/Branch_1/Conv2d_0a_1x1')
- test_conv2d(module.branch1[1], name+'/Branch_1/Conv2d_0b_1x7')
- test_conv2d(module.branch1[2], name+'/Branch_1/Conv2d_0c_7x1')
- test_conv2d(module.branch1[3], name+'/Branch_1/Conv2d_1a_3x3')
- ######################################################################
- ## Main
- ######################################################################
- if __name__ == "__main__":
- import h5py
- model = InceptionV4()
- state_dict = load()
- model.load_state_dict(state_dict)
- # test_conv2d(model.features[0], 'Conv2d_1a_3x3')
- # test_conv2d(model.features[1], 'Conv2d_2a_3x3')
- # test_conv2d(model.features[2], 'Conv2d_2b_3x3')
- # test_conv2d(model.features[3].conv, 'Mixed_3a/Branch_1/Conv2d_0a_3x3')
- # test_mixed_4a_7a(model.features[4], 'Mixed_4a')
-
- os.system('mkdir -p save')
- torch.save(model, 'save/inceptionv4.pth')
- torch.save(state_dict, 'save/inceptionv4_state.pth')
- outputs = test(model)
|