resnet.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. import torch.nn as nn
  2. import math
  3. import torch.utils.model_zoo as model_zoo
  4. from ..layers import *
  5. __all__ = ['vgg_resnet50']
  6. model_urls = {
  7. 'vgg_resnet50': 'https://download.pytorch.org/models/vggresnet.pth',
  8. }
  9. def conv(ni, nf, ks=3, stride=1):
  10. return nn.Conv2d(ni, nf, kernel_size=ks, stride=stride, padding=ks//2, bias=False)
  11. def bn1(planes):
  12. m = nn.BatchNorm1d(planes)
  13. m.weight.data.fill_(1)
  14. m.bias.data.zero_()
  15. return m
  16. def bn(planes, init_zero=False):
  17. m = nn.BatchNorm2d(planes)
  18. m.weight.data.fill_(0 if init_zero else 1)
  19. m.bias.data.zero_()
  20. return m
  21. class BasicBlock(nn.Module):
  22. expansion = 1
  23. def __init__(self, inplanes, planes, stride=1, downsample=None):
  24. super().__init__()
  25. self.conv1 = conv(inplanes, planes, stride=stride)
  26. self.bn1 = bn(planes)
  27. self.relu = nn.ReLU(inplace=True)
  28. self.conv2 = conv(planes, planes)
  29. self.bn2 = bn(planes)
  30. self.downsample = downsample
  31. self.stride = stride
  32. def forward(self, x):
  33. residual = x
  34. if self.downsample is not None: residual = self.downsample(x)
  35. out = self.conv1(x)
  36. out = self.relu(out)
  37. out = self.bn1(out)
  38. out = self.conv2(out)
  39. out = residual + out
  40. out = self.relu(out)
  41. out = self.bn2(out)
  42. return out
  43. class BottleneckFinal(nn.Module):
  44. expansion = 4
  45. def __init__(self, inplanes, planes, stride=1, downsample=None):
  46. super().__init__()
  47. self.conv1 = conv(inplanes, planes, ks=1)
  48. self.bn1 = bn(planes)
  49. self.conv2 = conv(planes, planes, stride=stride)
  50. self.bn2 = bn(planes)
  51. self.conv3 = conv(planes, planes*4, ks=1)
  52. self.bn3 = bn(planes * 4)
  53. self.relu = nn.ReLU(inplace=True)
  54. self.downsample = downsample
  55. self.stride = stride
  56. def forward(self, x):
  57. residual = x
  58. if self.downsample is not None: residual = self.downsample(x)
  59. out = self.conv1(x)
  60. out = self.bn1(out)
  61. out = self.relu(out)
  62. out = self.conv2(out)
  63. out = self.bn2(out)
  64. out = self.relu(out)
  65. out = self.conv3(out)
  66. out = residual + out
  67. out = self.bn3(out)
  68. out = self.relu(out)
  69. return out
  70. class BottleneckZero(nn.Module):
  71. expansion = 4
  72. def __init__(self, inplanes, planes, stride=1, downsample=None):
  73. super().__init__()
  74. self.conv1 = conv(inplanes, planes, ks=1)
  75. self.bn1 = bn(planes)
  76. self.conv2 = conv(planes, planes, stride=stride)
  77. self.bn2 = bn(planes)
  78. self.conv3 = conv(planes, planes*4, ks=1)
  79. self.bn3 = bn(planes * 4, init_zero=True)
  80. self.relu = nn.ReLU(inplace=True)
  81. self.downsample = downsample
  82. self.stride = stride
  83. def forward(self, x):
  84. residual = x
  85. if self.downsample is not None: residual = self.downsample(x)
  86. out = self.conv1(x)
  87. out = self.bn1(out)
  88. out = self.relu(out)
  89. out = self.conv2(out)
  90. out = self.bn2(out)
  91. out = self.relu(out)
  92. out = self.conv3(out)
  93. out = self.bn3(out)
  94. out = residual + out
  95. out = self.relu(out)
  96. return out
  97. class Bottleneck(nn.Module):
  98. expansion = 4
  99. def __init__(self, inplanes, planes, stride=1, downsample=None):
  100. super().__init__()
  101. self.conv1 = conv(inplanes, planes, ks=1)
  102. self.bn1 = bn(planes)
  103. self.conv2 = conv(planes, planes, stride=stride)
  104. self.bn2 = bn(planes)
  105. self.conv3 = conv(planes, planes*4, ks=1)
  106. self.bn3 = bn(planes * 4)
  107. self.relu = nn.ReLU(inplace=True)
  108. self.downsample = downsample
  109. self.stride = stride
  110. def forward(self, x):
  111. residual = x
  112. if self.downsample is not None: residual = self.downsample(x)
  113. out = self.conv1(x)
  114. out = self.bn1(out)
  115. out = self.relu(out)
  116. out = self.conv2(out)
  117. out = self.bn2(out)
  118. out = self.relu(out)
  119. out = self.conv3(out)
  120. out = self.bn3(out)
  121. out = residual + out
  122. out = self.relu(out)
  123. return out
  124. class ResNet(nn.Module):
  125. def __init__(self, block, layers, num_classes=1000, k=1, vgg_head=False):
  126. super().__init__()
  127. self.inplanes = 64
  128. features = [conv(3, 64, ks=7, stride=2)
  129. , bn(64) , nn.ReLU(inplace=True) , nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
  130. , self._make_layer(block, int(64*k), layers[0])
  131. , self._make_layer(block, int(128*k), layers[1], stride=2)
  132. , self._make_layer(block, int(256*k), layers[2], stride=2)
  133. , self._make_layer(block, int(512*k), layers[3], stride=2)]
  134. out_sz = int(512*k) * block.expansion
  135. if vgg_head:
  136. features += [nn.AdaptiveAvgPool2d(3), Flatten()
  137. , nn.Linear(out_sz*3*3, 4096), nn.ReLU(inplace=True), bn1(4096), nn.Dropout(0.25)
  138. , nn.Linear(4096, 4096), nn.ReLU(inplace=True), bn1(4096), nn.Dropout(0.25)
  139. , nn.Linear(4096, num_classes)]
  140. else: features += [nn.AdaptiveAvgPool2d(1), Flatten(), nn.Linear(out_sz, num_classes)]
  141. self.features = nn.Sequential(*features)
  142. for m in self.modules():
  143. if isinstance(m, nn.Conv2d):
  144. n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
  145. m.weight.data.normal_(0, math.sqrt(2. / n))
  146. def _make_layer(self, block, planes, blocks, stride=1):
  147. downsample = None
  148. if stride != 1 or self.inplanes != planes * block.expansion:
  149. downsample = nn.Sequential(
  150. conv(self.inplanes, planes*block.expansion, ks=1, stride=stride),
  151. bn(planes * block.expansion),
  152. )
  153. layers = []
  154. layers.append(block(self.inplanes, planes, stride, downsample))
  155. self.inplanes = planes * block.expansion
  156. for i in range(1, blocks): layers.append(block(self.inplanes, planes))
  157. return nn.Sequential(*layers)
  158. def forward(self, x): return self.features(x)
  159. def bnf_resnet50 (): return ResNet(BottleneckFinal, [3, 4, 6, 3])
  160. def bnz_resnet50 (): return ResNet(BottleneckZero, [3, 4, 6, 3])
  161. def w5_resnet50 (): return ResNet(Bottleneck, [2, 3, 3, 2], k=1.5)
  162. def w25_resnet50(): return ResNet(Bottleneck, [3, 4, 4, 3], k=1.25)
  163. def w125_resnet50(): return ResNet(Bottleneck, [3, 4, 6, 3], k=1.125)
  164. def vgg_resnet34(): return ResNet(BasicBlock, [3, 4, 6, 3], vgg_head=True)
  165. def vgg_resnet50(pretrained=False):
  166. model = ResNet(Bottleneck, [3, 4, 6, 3], vgg_head=True)
  167. if pretrained: model.load_state_dict(torch.load('/home/jhoward/.torch/models/vgg_resnet50.pth'))
  168. return model