123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- import torch.nn as nn
- import math
- import torch.utils.model_zoo as model_zoo
- from ..layers import *
- __all__ = ['vgg_resnet50']
- model_urls = {
- 'vgg_resnet50': 'https://download.pytorch.org/models/vggresnet.pth',
- }
- def conv(ni, nf, ks=3, stride=1):
- return nn.Conv2d(ni, nf, kernel_size=ks, stride=stride, padding=ks//2, bias=False)
- def bn1(planes):
- m = nn.BatchNorm1d(planes)
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- return m
- def bn(planes, init_zero=False):
- m = nn.BatchNorm2d(planes)
- m.weight.data.fill_(0 if init_zero else 1)
- m.bias.data.zero_()
- return m
- class BasicBlock(nn.Module):
- expansion = 1
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super().__init__()
- self.conv1 = conv(inplanes, planes, stride=stride)
- self.bn1 = bn(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv(planes, planes)
- self.bn2 = bn(planes)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- residual = x
- if self.downsample is not None: residual = self.downsample(x)
- out = self.conv1(x)
- out = self.relu(out)
- out = self.bn1(out)
- out = self.conv2(out)
- out = residual + out
- out = self.relu(out)
- out = self.bn2(out)
- return out
- class BottleneckFinal(nn.Module):
- expansion = 4
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super().__init__()
- self.conv1 = conv(inplanes, planes, ks=1)
- self.bn1 = bn(planes)
- self.conv2 = conv(planes, planes, stride=stride)
- self.bn2 = bn(planes)
- self.conv3 = conv(planes, planes*4, ks=1)
- self.bn3 = bn(planes * 4)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- residual = x
- if self.downsample is not None: residual = self.downsample(x)
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
- out = self.conv3(out)
- out = residual + out
- out = self.bn3(out)
- out = self.relu(out)
- return out
- class BottleneckZero(nn.Module):
- expansion = 4
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super().__init__()
- self.conv1 = conv(inplanes, planes, ks=1)
- self.bn1 = bn(planes)
- self.conv2 = conv(planes, planes, stride=stride)
- self.bn2 = bn(planes)
- self.conv3 = conv(planes, planes*4, ks=1)
- self.bn3 = bn(planes * 4, init_zero=True)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- residual = x
- if self.downsample is not None: residual = self.downsample(x)
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
- out = self.conv3(out)
- out = self.bn3(out)
- out = residual + out
- out = self.relu(out)
- return out
- class Bottleneck(nn.Module):
- expansion = 4
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super().__init__()
- self.conv1 = conv(inplanes, planes, ks=1)
- self.bn1 = bn(planes)
- self.conv2 = conv(planes, planes, stride=stride)
- self.bn2 = bn(planes)
- self.conv3 = conv(planes, planes*4, ks=1)
- self.bn3 = bn(planes * 4)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- residual = x
- if self.downsample is not None: residual = self.downsample(x)
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
- out = self.conv3(out)
- out = self.bn3(out)
- out = residual + out
- out = self.relu(out)
- return out
- class ResNet(nn.Module):
- def __init__(self, block, layers, num_classes=1000, k=1, vgg_head=False):
- super().__init__()
- self.inplanes = 64
- features = [conv(3, 64, ks=7, stride=2)
- , bn(64) , nn.ReLU(inplace=True) , nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- , self._make_layer(block, int(64*k), layers[0])
- , self._make_layer(block, int(128*k), layers[1], stride=2)
- , self._make_layer(block, int(256*k), layers[2], stride=2)
- , self._make_layer(block, int(512*k), layers[3], stride=2)]
- out_sz = int(512*k) * block.expansion
- if vgg_head:
- features += [nn.AdaptiveAvgPool2d(3), Flatten()
- , nn.Linear(out_sz*3*3, 4096), nn.ReLU(inplace=True), bn1(4096), nn.Dropout(0.25)
- , nn.Linear(4096, 4096), nn.ReLU(inplace=True), bn1(4096), nn.Dropout(0.25)
- , nn.Linear(4096, num_classes)]
- else: features += [nn.AdaptiveAvgPool2d(1), Flatten(), nn.Linear(out_sz, num_classes)]
- self.features = nn.Sequential(*features)
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.data.normal_(0, math.sqrt(2. / n))
- def _make_layer(self, block, planes, blocks, stride=1):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- conv(self.inplanes, planes*block.expansion, ks=1, stride=stride),
- bn(planes * block.expansion),
- )
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample))
- self.inplanes = planes * block.expansion
- for i in range(1, blocks): layers.append(block(self.inplanes, planes))
- return nn.Sequential(*layers)
- def forward(self, x): return self.features(x)
- def bnf_resnet50 (): return ResNet(BottleneckFinal, [3, 4, 6, 3])
- def bnz_resnet50 (): return ResNet(BottleneckZero, [3, 4, 6, 3])
- def w5_resnet50 (): return ResNet(Bottleneck, [2, 3, 3, 2], k=1.5)
- def w25_resnet50(): return ResNet(Bottleneck, [3, 4, 4, 3], k=1.25)
- def w125_resnet50(): return ResNet(Bottleneck, [3, 4, 6, 3], k=1.125)
- def vgg_resnet34(): return ResNet(BasicBlock, [3, 4, 6, 3], vgg_head=True)
- def vgg_resnet50(pretrained=False):
- model = ResNet(Bottleneck, [3, 4, 6, 3], vgg_head=True)
- if pretrained: model.load_state_dict(torch.load('/home/jhoward/.torch/models/vgg_resnet50.pth'))
- return model
|