123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686 |
- import torch
- import torch.nn as nn
- from torch.autograd import Variable
- from functools import reduce
- class LambdaBase(nn.Sequential):
- def __init__(self, fn, *args):
- super(LambdaBase, self).__init__(*args)
- self.lambda_func = fn
- def forward_prepare(self, input):
- output = []
- for module in self._modules.values():
- output.append(module(input))
- return output if output else input
- class Lambda(LambdaBase):
- def forward(self, input):
- return self.lambda_func(self.forward_prepare(input))
- class LambdaMap(LambdaBase):
- def forward(self, input):
- return list(map(self.lambda_func,self.forward_prepare(input)))
- class LambdaReduce(LambdaBase):
- def forward(self, input):
- return reduce(self.lambda_func,self.forward_prepare(input))
- def resnext_101_32x4d(): return nn.Sequential( # Sequential,
- nn.Conv2d(3,64,(7, 7),(2, 2),(3, 3),1,1,bias=False),
- nn.BatchNorm2d(64),
- nn.ReLU(),
- nn.MaxPool2d((3, 3),(2, 2),(1, 1)),
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(64,128,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(128),
- nn.ReLU(),
- nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(128),
- nn.ReLU(),
- ),
- nn.Conv2d(128,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(256),
- ),
- nn.Sequential( # Sequential,
- nn.Conv2d(64,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(256),
- ),
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(256,128,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(128),
- nn.ReLU(),
- nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(128),
- nn.ReLU(),
- ),
- nn.Conv2d(128,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(256),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(256,128,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(128),
- nn.ReLU(),
- nn.Conv2d(128,128,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(128),
- nn.ReLU(),
- ),
- nn.Conv2d(128,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(256),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- ),
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(256,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(256),
- nn.ReLU(),
- nn.Conv2d(256,256,(3, 3),(2, 2),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(256),
- nn.ReLU(),
- ),
- nn.Conv2d(256,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- ),
- nn.Sequential( # Sequential,
- nn.Conv2d(256,512,(1, 1),(2, 2),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- ),
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(512,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(256),
- nn.ReLU(),
- nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(256),
- nn.ReLU(),
- ),
- nn.Conv2d(256,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(512,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(256),
- nn.ReLU(),
- nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(256),
- nn.ReLU(),
- ),
- nn.Conv2d(256,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(512,256,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(256),
- nn.ReLU(),
- nn.Conv2d(256,256,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(256),
- nn.ReLU(),
- ),
- nn.Conv2d(256,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- ),
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(512,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(2, 2),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- nn.Sequential( # Sequential,
- nn.Conv2d(512,1024,(1, 1),(2, 2),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,512,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.Conv2d(512,512,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- ),
- nn.Conv2d(512,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- ),
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- nn.ReLU(),
- nn.Conv2d(1024,1024,(3, 3),(2, 2),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(1024),
- nn.ReLU(),
- ),
- nn.Conv2d(1024,2048,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(2048),
- ),
- nn.Sequential( # Sequential,
- nn.Conv2d(1024,2048,(1, 1),(2, 2),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(2048),
- ),
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(2048,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- nn.ReLU(),
- nn.Conv2d(1024,1024,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(1024),
- nn.ReLU(),
- ),
- nn.Conv2d(1024,2048,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(2048),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- nn.Sequential( # Sequential,
- LambdaMap(lambda x: x, # ConcatTable,
- nn.Sequential( # Sequential,
- nn.Sequential( # Sequential,
- nn.Conv2d(2048,1024,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(1024),
- nn.ReLU(),
- nn.Conv2d(1024,1024,(3, 3),(1, 1),(1, 1),1,32,bias=False),
- nn.BatchNorm2d(1024),
- nn.ReLU(),
- ),
- nn.Conv2d(1024,2048,(1, 1),(1, 1),(0, 0),1,1,bias=False),
- nn.BatchNorm2d(2048),
- ),
- Lambda(lambda x: x), # Identity,
- ),
- LambdaReduce(lambda x,y: x+y), # CAddTable,
- nn.ReLU(),
- ),
- ),
- nn.AvgPool2d((7, 7),(1, 1)),
- Lambda(lambda x: x.view(x.size(0),-1)), # View,
- nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(2048,1000)), # Linear,
- )
|