123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- from fastai import *
- from fastai.core import *
- from fastai.torch_core import *
- from fastai.callbacks import hook_outputs
- import torchvision.models as models
- class FeatureLoss(nn.Module):
- def __init__(self, layer_wgts=[20,70,10]):
- super().__init__()
- self.m_feat = models.vgg16_bn(True).features.cuda().eval()
- requires_grad(self.m_feat, False)
- blocks = [i-1 for i,o in enumerate(children(self.m_feat)) if isinstance(o,nn.MaxPool2d)]
- layer_ids = blocks[2:5]
- self.loss_features = [self.m_feat[i] for i in layer_ids]
- self.hooks = hook_outputs(self.loss_features, detach=False)
- self.wgts = layer_wgts
- self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))]
- self.base_loss = F.l1_loss
- def _make_features(self, x, clone=False):
- self.m_feat(x)
- return [(o.clone() if clone else o) for o in self.hooks.stored]
- def forward(self, input, target):
- out_feat = self._make_features(target, clone=True)
- in_feat = self._make_features(input)
- self.feat_losses = [self.base_loss(input,target)]
- self.feat_losses += [self.base_loss(f_in, f_out)*w
- for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
-
- self.metrics = dict(zip(self.metric_names, self.feat_losses))
- return sum(self.feat_losses)
-
- def __del__(self): self.hooks.remove()
- #Includes wasserstein loss
- class WassFeatureLoss(nn.Module):
- def __init__(self, layer_wgts=[5,15,2], wass_wgts=[3.0,0.7,0.01]):
- super().__init__()
- self.m_feat = models.vgg16_bn(True).features.cuda().eval()
- requires_grad(self.m_feat, False)
- blocks = [i-1 for i,o in enumerate(children(self.m_feat)) if isinstance(o,nn.MaxPool2d)]
- layer_ids = blocks[2:5]
- self.loss_features = [self.m_feat[i] for i in layer_ids]
- self.hooks = hook_outputs(self.loss_features, detach=False)
- self.wgts = layer_wgts
- self.wass_wgts = wass_wgts
- self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))] + [f'wass_{i}' for i in range(len(layer_ids))]
- self.base_loss = F.l1_loss
- def _make_features(self, x, clone=False):
- self.m_feat(x)
- return [(o.clone() if clone else o) for o in self.hooks.stored]
- def _calc_2_moments(self, tensor):
- chans = tensor.shape[1]
- tensor = tensor.view(1, chans, -1)
- n = tensor.shape[2]
- mu = tensor.mean(2)
- tensor = (tensor - mu[:,:,None]).squeeze(0)
- #Prevents nasty bug that happens very occassionally- divide by zero. Why such things happen?
- if n == 0: return None, None
- cov = torch.mm(tensor, tensor.t()) / float(n)
- return mu, cov
- def _get_style_vals(self, tensor):
- mean, cov = self._calc_2_moments(tensor)
- if mean is None:
- return None, None, None
- eigvals, eigvects = torch.symeig(cov, eigenvectors=True)
- eigroot_mat = torch.diag(torch.sqrt(eigvals.clamp(min=0)))
- root_cov = torch.mm(torch.mm(eigvects, eigroot_mat), eigvects.t())
- tr_cov = eigvals.clamp(min=0).sum()
- return mean, tr_cov, root_cov
- def _calc_l2wass_dist(self, mean_stl, tr_cov_stl, root_cov_stl, mean_synth, cov_synth):
- tr_cov_synth = torch.symeig(cov_synth, eigenvectors=True)[0].clamp(min=0).sum()
- mean_diff_squared = (mean_stl - mean_synth).pow(2).sum()
- cov_prod = torch.mm(torch.mm(root_cov_stl, cov_synth), root_cov_stl)
- var_overlap = torch.sqrt(torch.symeig(cov_prod, eigenvectors=True)[0].clamp(min=0)+1e-8).sum()
- dist = mean_diff_squared + tr_cov_stl + tr_cov_synth - 2*var_overlap
- return dist
- def _single_wass_loss(self, pred, targ):
- mean_test, tr_cov_test, root_cov_test = targ
- mean_synth, cov_synth = self._calc_2_moments(pred)
- loss = self._calc_l2wass_dist(mean_test, tr_cov_test, root_cov_test, mean_synth, cov_synth)
- return loss
-
- def forward(self, input, target):
- out_feat = self._make_features(target, clone=True)
- in_feat = self._make_features(input)
- self.feat_losses = [self.base_loss(input,target)]
- self.feat_losses += [self.base_loss(f_in, f_out)*w
- for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
-
- styles = [self._get_style_vals(i) for i in out_feat]
- if styles[0][0] is not None:
- self.feat_losses += [self._single_wass_loss(f_pred, f_targ)*w
- for f_pred, f_targ, w in zip(in_feat, styles, self.wass_wgts)]
-
- self.metrics = dict(zip(self.metric_names, self.feat_losses))
- return sum(self.feat_losses)
-
- def __del__(self): self.hooks.remove()
|