visualize.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189
  1. from fastai.core import *
  2. from fastai.vision import *
  3. from matplotlib.axes import Axes
  4. from matplotlib.figure import Figure
  5. from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
  6. from .filters import IFilter, MasterFilter, ColorizerFilter
  7. from .generators import gen_inference_deep, gen_inference_wide
  8. from IPython.display import display
  9. from tensorboardX import SummaryWriter
  10. from scipy import misc
  11. from PIL import Image
  12. import ffmpeg
  13. import youtube_dl
  14. import gc
  15. import requests
  16. from io import BytesIO
  17. class ModelImageVisualizer():
  18. def __init__(self, filter:IFilter, results_dir:str=None):
  19. self.filter = filter
  20. self.results_dir=None if results_dir is None else Path(results_dir)
  21. self.results_dir.mkdir(parents=True, exist_ok=True)
  22. def _clean_mem(self):
  23. return
  24. torch.cuda.empty_cache()
  25. #gc.collect()
  26. def _open_pil_image(self, path:Path)->Image:
  27. return PIL.Image.open(path).convert('RGB')
  28. def plot_transformed_image_from_url(self, url:str, path:str='test_images/image.png', figsize:(int,int)=(20,20), render_factor:int=None)->Image:
  29. response = requests.get(url)
  30. img = Image.open(BytesIO(response.content)).convert('RGB')
  31. img.save(path)
  32. return self.plot_transformed_image(path=path, figsize=figsize, render_factor=render_factor)
  33. def plot_transformed_image(self, path:str, figsize:(int,int)=(20,20), render_factor:int=None)->Image:
  34. path = Path(path)
  35. result = self.get_transformed_image(path, render_factor)
  36. orig = self._open_pil_image(path)
  37. fig,axes = plt.subplots(1, 2, figsize=figsize)
  38. self._plot_image(orig, axes=axes[0], figsize=figsize)
  39. self._plot_image(result, axes=axes[1], figsize=figsize)
  40. if self.results_dir is not None:
  41. self._save_result_image(path, result)
  42. def _save_result_image(self, source_path:Path, image:Image):
  43. result_path = self.results_dir/source_path.name
  44. image.save(result_path)
  45. def get_transformed_image(self, path:Path, render_factor:int=None)->Image:
  46. self._clean_mem()
  47. orig_image = self._open_pil_image(path)
  48. filtered_image = self.filter.filter(orig_image, orig_image, render_factor=render_factor)
  49. return filtered_image
  50. def _plot_image(self, image:Image, axes:Axes=None, figsize=(20,20)):
  51. if axes is None:
  52. _,axes = plt.subplots(figsize=figsize)
  53. axes.imshow(np.asarray(image)/255)
  54. axes.axis('off')
  55. def _get_num_rows_columns(self, num_images:int, max_columns:int)->(int,int):
  56. columns = min(num_images, max_columns)
  57. rows = num_images//columns
  58. rows = rows if rows * columns == num_images else rows + 1
  59. return rows, columns
  60. class VideoColorizer():
  61. def __init__(self, vis:ModelImageVisualizer):
  62. self.vis=vis
  63. workfolder = Path('./video')
  64. self.source_folder = workfolder/"source"
  65. self.bwframes_root = workfolder/"bwframes"
  66. self.audio_root = workfolder/"audio"
  67. self.colorframes_root = workfolder/"colorframes"
  68. self.result_folder = workfolder/"result"
  69. def _purge_images(self, dir):
  70. for f in os.listdir(dir):
  71. if re.search('.*?\.jpg', f):
  72. os.remove(os.path.join(dir, f))
  73. def _get_fps(self, source_path: Path)->float:
  74. probe = ffmpeg.probe(str(source_path))
  75. stream_data = next((stream for stream in probe['streams'] if stream['codec_type'] == 'video'), None)
  76. avg_frame_rate = stream_data['avg_frame_rate']
  77. fps_num=avg_frame_rate.split("/")[0]
  78. fps_den = avg_frame_rate.rsplit("/")[1]
  79. return round(float(fps_num)/float(fps_den))
  80. def _download_video_from_url(self, source_url, source_path:Path):
  81. if source_path.exists(): source_path.unlink()
  82. ydl_opts = {
  83. 'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4',
  84. 'outtmpl': str(source_path)
  85. }
  86. with youtube_dl.YoutubeDL(ydl_opts) as ydl:
  87. ydl.download([source_url])
  88. def _extract_raw_frames(self, source_path:Path):
  89. bwframes_folder = self.bwframes_root/(source_path.stem)
  90. bwframe_path_template = str(bwframes_folder/'%5d.jpg')
  91. bwframes_folder.mkdir(parents=True, exist_ok=True)
  92. self._purge_images(bwframes_folder)
  93. ffmpeg.input(str(source_path)).output(str(bwframe_path_template), format='image2', vcodec='mjpeg', qscale=0).run(capture_stdout=True)
  94. def _colorize_raw_frames(self, source_path:Path, render_factor:int=None):
  95. colorframes_folder = self.colorframes_root/(source_path.stem)
  96. colorframes_folder.mkdir(parents=True, exist_ok=True)
  97. self._purge_images(colorframes_folder)
  98. bwframes_folder = self.bwframes_root/(source_path.stem)
  99. for img in progress_bar(os.listdir(str(bwframes_folder))):
  100. img_path = bwframes_folder/img
  101. if os.path.isfile(str(img_path)):
  102. color_image = self.vis.get_transformed_image(str(img_path), render_factor=render_factor)
  103. color_image.save(str(colorframes_folder/img))
  104. def _build_video(self, source_path:Path):
  105. result_path = self.result_folder/source_path.name
  106. colorframes_folder = self.colorframes_root/(source_path.stem)
  107. colorframes_path_template = str(colorframes_folder/'%5d.jpg')
  108. result_path.parent.mkdir(parents=True, exist_ok=True)
  109. if result_path.exists(): result_path.unlink()
  110. fps = self._get_fps(source_path)
  111. ffmpeg.input(str(colorframes_path_template), format='image2', vcodec='mjpeg', framerate=str(fps)) \
  112. .output(str(result_path), crf=17, vcodec='libx264') \
  113. .run(capture_stdout=True)
  114. print('Video created here: ' + str(result_path))
  115. def colorize_from_url(self, source_url, file_name:str, render_factor:int=None):
  116. source_path = self.source_folder/file_name
  117. self._download_video_from_url(source_url, source_path)
  118. self._colorize_from_path(source_path, render_factor=render_factor)
  119. def colorize_from_file_name(self, file_name:str, render_factor:int=None):
  120. source_path = self.source_folder/file_name
  121. self._colorize_from_path(source_path, render_factor=render_factor)
  122. def _colorize_from_path(self, source_path:Path, render_factor:int=None):
  123. if not source_path.exists():
  124. raise Exception('Video at path specfied, ' + str(source_path) + ' could not be found.')
  125. self._extract_raw_frames(source_path)
  126. self._colorize_raw_frames(source_path, render_factor=render_factor)
  127. self._build_video(source_path)
  128. def get_video_colorizer(render_factor:int=21)->VideoColorizer:
  129. return get_stable_video_colorizer(render_factor=render_factor)
  130. def get_stable_video_colorizer(root_folder:Path=Path('./'), weights_name:str='ColorizeVideo_gen',
  131. results_dir='result_images', render_factor:int=21)->VideoColorizer:
  132. learn = gen_inference_wide(root_folder=root_folder, weights_name=weights_name)
  133. filtr = MasterFilter([ColorizerFilter(learn=learn)], render_factor=render_factor)
  134. vis = ModelImageVisualizer(filtr, results_dir=results_dir)
  135. return VideoColorizer(vis)
  136. def get_image_colorizer(render_factor:int=35, artistic:bool=True)->ModelImageVisualizer:
  137. if artistic:
  138. return get_artistic_image_colorizer(render_factor=render_factor)
  139. else:
  140. return get_stable_image_colorizer(render_factor=render_factor)
  141. def get_stable_image_colorizer(root_folder:Path=Path('./'), weights_name:str='ColorizeStable_gen',
  142. results_dir='result_images', render_factor:int=35)->ModelImageVisualizer:
  143. learn = gen_inference_wide(root_folder=root_folder, weights_name=weights_name)
  144. filtr = MasterFilter([ColorizerFilter(learn=learn)], render_factor=render_factor)
  145. vis = ModelImageVisualizer(filtr, results_dir=results_dir)
  146. return vis
  147. def get_artistic_image_colorizer(root_folder:Path=Path('./'), weights_name:str='ColorizeArtistic_gen',
  148. results_dir='result_images', render_factor:int=35)->ModelImageVisualizer:
  149. learn = gen_inference_deep(root_folder=root_folder, weights_name=weights_name)
  150. filtr = MasterFilter([ColorizerFilter(learn=learn)], render_factor=render_factor)
  151. vis = ModelImageVisualizer(filtr, results_dir=results_dir)
  152. return vis