/** * Copyright (c) 2023 Xiaomi Corporation (authors: Fangjun Kuang) * * See LICENSE for clarification regarding multiple authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include // std::tolower #include #include "sherpa-ncnn/csrc/display.h" #include "sherpa-ncnn/csrc/recognizer.h" /* * The MIT License (MIT) * * Copyright (c) 2010 Nicolas George * Copyright (c) 2011 Stefano Sabatini * Copyright (c) 2012 Clément Bœsch * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /** * @file audio decoding and filtering usage example * @example sherpa-ncnn-ffmpeg.c * * Demux, decode and filter audio input file, generate a raw audio * file to be played with ffplay. */ #include #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include #include #include #ifdef __cplusplus } #endif static int32_t FFmpegOpenInputFile(AVFormatContext *ffmpeg_fmt_ctx, const char *filename, int32_t *ffmpeg_audio_stream_index) { int32_t ret; if ((ret = avformat_open_input(&ffmpeg_fmt_ctx, filename, NULL, NULL)) < 0) { av_log(NULL, AV_LOG_ERROR, "Cannot open input file %s, ret=%d\n", filename, ret); return ret; } if ((ret = avformat_find_stream_info(ffmpeg_fmt_ctx, NULL)) < 0) { av_log(NULL, AV_LOG_ERROR, "Cannot find stream information, ret=%d\n", ret); return ret; } /* select the audio stream */ enum AVMediaType type = AVMEDIA_TYPE_AUDIO; ret = av_find_best_stream(ffmpeg_fmt_ctx, type, -1, -1, NULL, 0); if (ret < 0) { av_log(NULL, AV_LOG_ERROR, "No audio stream in the input file, ret=%d\n", ret); return ret; } *ffmpeg_audio_stream_index = ret; return 0; } static int32_t FFmpegOpenDecoder(AVCodecContext *ffmpeg_dec_ctx, AVStream *stream, const AVCodec *dec) { if (!dec) { av_log(NULL, AV_LOG_ERROR, "Failed to find %d codec", stream->codecpar->codec_id); return AVERROR(EINVAL); } avcodec_parameters_to_context(ffmpeg_dec_ctx, stream->codecpar); /* init the audio decoder */ int32_t ret; if ((ret = avcodec_open2(ffmpeg_dec_ctx, dec, NULL)) < 0) { av_log(NULL, AV_LOG_ERROR, "Cannot open audio decoder, ret=%d\n", ret); return ret; } return 0; } static int32_t FFmpegInitFilters(AVCodecContext *ffmpeg_dec_ctx, AVFilterGraph *ffmpeg_filter_graph, AVFilterContext **ffmpeg_buffersink_ctx, AVFilterContext **ffmpeg_buffersrc_ctx, AVRational time_base, const char *filters_descr) { /* buffer audio source: the decoded frames from the decoder will be inserted * here. */ if (ffmpeg_dec_ctx->ch_layout.order == AV_CHANNEL_ORDER_UNSPEC) { av_channel_layout_default(&ffmpeg_dec_ctx->ch_layout, ffmpeg_dec_ctx->ch_layout.nb_channels); } char args[512]; int32_t ret = snprintf(args, sizeof(args), "time_base=%d/%d:sample_rate=%d:sample_fmt=%s:channel_layout=", time_base.num, time_base.den, ffmpeg_dec_ctx->sample_rate, av_get_sample_fmt_name(ffmpeg_dec_ctx->sample_fmt)); av_channel_layout_describe(&ffmpeg_dec_ctx->ch_layout, args + ret, sizeof(args) - ret); const AVFilter *abuffersrc = avfilter_get_by_name("abuffer"); ret = avfilter_graph_create_filter(ffmpeg_buffersrc_ctx, abuffersrc, "in", args, NULL, ffmpeg_filter_graph); if (ret < 0) { av_log(NULL, AV_LOG_ERROR, "Cannot create audio buffer source, ret=%d\n", ret); return AVERROR(EINVAL); } /* buffer audio sink: to terminate the filter chain. */ const AVFilter *abuffersink = avfilter_get_by_name("abuffersink"); ret = avfilter_graph_create_filter(ffmpeg_buffersink_ctx, abuffersink, "out", NULL, NULL, ffmpeg_filter_graph); if (ret < 0) { av_log(NULL, AV_LOG_ERROR, "Cannot create audio buffer sink, ret=%d\n", ret); return AVERROR(EINVAL); } static const enum AVSampleFormat out_sample_fmts[] = {AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE}; ret = av_opt_set_int_list(*ffmpeg_buffersink_ctx, "sample_fmts", out_sample_fmts, -1, AV_OPT_SEARCH_CHILDREN); if (ret < 0) { av_log(NULL, AV_LOG_ERROR, "Cannot set output sample format, ret=%d\n", ret); return AVERROR(EINVAL); } ret = av_opt_set(*ffmpeg_buffersink_ctx, "ch_layouts", "mono", AV_OPT_SEARCH_CHILDREN); if (ret < 0) { av_log(NULL, AV_LOG_ERROR, "Cannot set output channel layout, ret=%d\n", ret); return AVERROR(EINVAL); } static const int32_t out_sample_rates[] = {16000, -1}; ret = av_opt_set_int_list(*ffmpeg_buffersink_ctx, "sample_rates", out_sample_rates, -1, AV_OPT_SEARCH_CHILDREN); if (ret < 0) { av_log(NULL, AV_LOG_ERROR, "Cannot set output sample rate, ret=%d\n", ret); return AVERROR(EINVAL); } /* * Set the endpoints for the filter graph. The ffmpeg_filter_graph will * be linked to the graph described by filters_descr. */ /* * The buffer source output must be connected to the input pad of * the first filter described by filters_descr; since the first * filter input label is not specified, it is set to "in" by * default. */ auto outputs = std::unique_ptr( avfilter_inout_alloc(), [](AVFilterInOut *p) { avfilter_inout_free(&p); }); if (outputs == nullptr) { av_log(NULL, AV_LOG_ERROR, "Cannot allocate memory for outputs"); return AVERROR(EINVAL); } outputs->name = av_strdup("in"); outputs->filter_ctx = *ffmpeg_buffersrc_ctx; outputs->pad_idx = 0; outputs->next = NULL; /* * The buffer sink input must be connected to the output pad of * the last filter described by filters_descr; since the last * filter output label is not specified, it is set to "out" by * default. */ auto inputs = std::unique_ptr( avfilter_inout_alloc(), [](AVFilterInOut *p) { avfilter_inout_free(&p); }); if (inputs == nullptr) { av_log(NULL, AV_LOG_ERROR, "Cannot allocate memory for inputs"); return AVERROR(EINVAL); } inputs->name = av_strdup("out"); inputs->filter_ctx = *ffmpeg_buffersink_ctx; inputs->pad_idx = 0; inputs->next = NULL; // The avfilter_graph_parse_ptr might change the pointer, so we need to // release inputs to inputs_ptr, then reset inputs_ptr to inputs. Note that // inputs_ptr might change after avfilter_graph_parse_ptr. AVFilterInOut *inputs_ptr = inputs.release(); AVFilterInOut *outputs_ptr = outputs.release(); ret = avfilter_graph_parse_ptr(ffmpeg_filter_graph, filters_descr, &inputs_ptr, &outputs_ptr, NULL); inputs.reset(inputs_ptr); outputs.reset(outputs_ptr); if (ret < 0) { av_log(NULL, AV_LOG_ERROR, "Cannot avfilter_graph_parse_ptr, ret=%d\n", ret); return AVERROR(EINVAL); } if ((ret = avfilter_graph_config(ffmpeg_filter_graph, NULL)) < 0) { av_log(NULL, AV_LOG_ERROR, "Cannot avfilter_graph_config, ret=%d\n", ret); return AVERROR(EINVAL); } /* Print summary of the sink buffer * Note: args buffer is reused to store channel layout string */ const AVFilterLink *outlink; outlink = (*ffmpeg_buffersink_ctx)->inputs[0]; av_channel_layout_describe(&outlink->ch_layout, args, sizeof(args)); fprintf( stdout, "Event:FFmpeg: Detect audio stream ok, srate:%dHz fmt:%s chlayout:%s\n", (int)outlink->sample_rate, (char *)av_x_if_null( av_get_sample_fmt_name((AVSampleFormat)outlink->format), "?"), args); fflush(stdout); return ret; } static void FFmpegOnDecodedFrame(const AVFrame *frame, const sherpa_ncnn::Recognizer &recognizer, sherpa_ncnn::Stream *s, sherpa_ncnn::Display *display, std::string *last_text, int32_t *segment_index, int32_t *zero_samples) { if (!frame->nb_samples) { return; } // Convert the PCM from int16_t to float. Note that K2 sample is [-1, 1], so // we need to divide by 32768. #define MAX_SAMPLES 3200 // 0.2 s. Sample rate is fixed to 16 kHz static float samples[MAX_SAMPLES]; int32_t nb_samples = 0; if (frame->nb_samples > MAX_SAMPLES) { av_log(NULL, AV_LOG_ERROR, "Too many samples: %d\n", frame->nb_samples); return; } if (1) { const int16_t *p = (int16_t *)frame->data[0]; for (int32_t i = 0; i < frame->nb_samples; i++) { // ASD(Active speaker detection) detection. if (p[i] == 0) { (*zero_samples)++; } // Convert to float [-1, 1]. samples[nb_samples++] = p[i] / 32768.; } } // Feed samples to K2, which accepts any number of samples. s->AcceptWaveform(16000, samples, nb_samples); while (recognizer.IsReady(s)) { recognizer.DecodeStream(s); } bool is_endpoint = recognizer.IsEndpoint(s); auto text = recognizer.GetResult(s).text; if (!text.empty() && *last_text != text) { *last_text = text; std::transform(text.begin(), text.end(), text.begin(), [](auto c) { return std::tolower(c); }); display->Print(*segment_index, text); } if (is_endpoint) { if (!text.empty()) { (*segment_index)++; } recognizer.Reset(s); } } static inline char *FFmpegAvError2String(int32_t errnum) { static char str[AV_ERROR_MAX_STRING_SIZE]; memset(str, 0, sizeof(str)); return av_make_error_string(str, AV_ERROR_MAX_STRING_SIZE, errnum); } // When stream unpublish, use this signal to notify application. static int32_t signal_unpublish_sigusr1 = 0; static void Handler(int32_t sig) { if (sig == SIGUSR1) { fprintf(stdout, "\nEvent:Signal: Got signal %d\n", sig); fflush(stdout); signal_unpublish_sigusr1 = 1; return; } fprintf(stdout, "\nEvent:Signal: Caught Ctrl + C. Exiting...\n"); fflush(stdout); signal(sig, SIG_DFL); raise(sig); }; #define SET_STRING_BY_ENV(config, key) \ if (getenv(key)) { \ config = getenv(key); \ } #define SET_CONFIG_BY_ENV(config, key, required) \ config = ""; \ SET_STRING_BY_ENV(config, key); \ if (!(config).empty() && required) { \ parsed_required_envs++; \ } #define SET_INTEGER_BY_ENV(config, key) \ { \ std::string val; \ SET_STRING_BY_ENV(val, "SHERPA_NCNN_ASD_ENDPOINTS"); \ if (!val.empty() && ::atoi(val.c_str()) > 0) { \ config = ::atoi(val.c_str()); \ } \ } static int32_t ParseConfigFromENV(sherpa_ncnn::RecognizerConfig *config, std::string *input_url) { int32_t parsed_required_envs = 0; sherpa_ncnn::ModelConfig &mc = config->model_config; SET_CONFIG_BY_ENV(mc.tokens, "SHERPA_NCNN_TOKENS", true); SET_CONFIG_BY_ENV(mc.encoder_param, "SHERPA_NCNN_ENCODER_PARAM", true); SET_CONFIG_BY_ENV(mc.encoder_bin, "SHERPA_NCNN_ENCODER_BIN", true); SET_CONFIG_BY_ENV(mc.decoder_param, "SHERPA_NCNN_DECODER_PARAM", true); SET_CONFIG_BY_ENV(mc.decoder_bin, "SHERPA_NCNN_DECODER_BIN", true); SET_CONFIG_BY_ENV(mc.joiner_param, "SHERPA_NCNN_JOINER_PARAM", true); SET_CONFIG_BY_ENV(mc.joiner_bin, "SHERPA_NCNN_JOINER_BIN", true); SET_CONFIG_BY_ENV(*input_url, "SHERPA_NCNN_INPUT_URL", true); std::string val; SET_CONFIG_BY_ENV(val, "SHERPA_NCNN_NUM_THREADS", false); if (!val.empty()) { if (atoi(val.c_str()) <= 0) { fprintf(stderr, "Invalid SHERPA_NCNN_NUM_THREADS=%s\n", val.c_str()); return -1; } mc.encoder_opt.num_threads = atoi(val.c_str()); mc.decoder_opt.num_threads = atoi(val.c_str()); mc.joiner_opt.num_threads = atoi(val.c_str()); } SET_CONFIG_BY_ENV(val, "SHERPA_NCNN_METHOD", false); if (!val.empty()) { if (val != "greedy_search" && val != "modified_beam_search") { fprintf(stderr, "Invalid SHERPA_NCNN_METHOD=%s\n", val.c_str()); return -1; } config->decoder_config.method = val; } SET_CONFIG_BY_ENV(val, "SHERPA_NCNN_ENABLE_ENDPOINT", false); if (!val.empty()) { std::transform(val.begin(), val.end(), val.begin(), [](auto c) { return std::tolower(c); }); config->enable_endpoint = val == "true" || val == "on"; } SET_CONFIG_BY_ENV(val, "SHERPA_NCNN_RULE1_MIN_TRAILING_SILENCE", false); if (!val.empty()) { if (::atof(val.c_str()) <= 0) { fprintf(stderr, "Invalid SHERPA_NCNN_RULE1_MIN_TRAILING_SILENCE=%s\n", val.c_str()); return -1; } config->endpoint_config.rule1.min_trailing_silence = ::atof(val.c_str()); } SET_CONFIG_BY_ENV(val, "SHERPA_NCNN_RULE2_MIN_TRAILING_SILENCE", false); if (!val.empty()) { if (::atof(val.c_str()) <= 0) { fprintf(stderr, "Invalid SHERPA_NCNN_RULE2_MIN_TRAILING_SILENCE=%s\n", val.c_str()); return -1; } config->endpoint_config.rule2.min_trailing_silence = ::atof(val.c_str()); } SET_CONFIG_BY_ENV(val, "SHERPA_NCNN_RULE3_MIN_UTTERANCE_LENGTH", false); if (!val.empty()) { if (::atof(val.c_str()) <= 0) { fprintf(stderr, "Invalid SHERPA_NCNN_RULE3_MIN_UTTERANCE_LENGTH=%s\n", val.c_str()); return -1; } config->endpoint_config.rule3.min_utterance_length = ::atof(val.c_str()); } return parsed_required_envs; } static void SetDefaultConfigurations(sherpa_ncnn::RecognizerConfig *config) { int32_t num_threads = 4; config->model_config.encoder_opt.num_threads = num_threads; config->model_config.decoder_opt.num_threads = num_threads; config->model_config.joiner_opt.num_threads = num_threads; config->enable_endpoint = true; config->endpoint_config.rule1.min_trailing_silence = 2.4; config->endpoint_config.rule2.min_trailing_silence = 1.2; config->endpoint_config.rule3.min_utterance_length = 300; const float expected_sampling_rate = 16000; config->feat_config.sampling_rate = expected_sampling_rate; config->feat_config.feature_dim = 80; } static int32_t OverwriteConfigByCLI(int32_t argc, char **argv, sherpa_ncnn::RecognizerConfig *config, std::string *input_url) { if (argc > 1) config->model_config.tokens = argv[1]; if (argc > 2) config->model_config.encoder_param = argv[2]; if (argc > 3) config->model_config.encoder_bin = argv[3]; if (argc > 4) config->model_config.decoder_param = argv[4]; if (argc > 5) config->model_config.decoder_bin = argv[5]; if (argc > 6) config->model_config.joiner_param = argv[6]; if (argc > 7) config->model_config.joiner_bin = argv[7]; if (argc > 8) *input_url = argv[8]; if (argc >= 10 && atoi(argv[9]) > 0) { int32_t num_threads = atoi(argv[9]); config->model_config.encoder_opt.num_threads = num_threads; config->model_config.decoder_opt.num_threads = num_threads; config->model_config.joiner_opt.num_threads = num_threads; } if (argc == 11) { std::string val = argv[10]; if (val != "greedy_search" && val != "modified_beam_search") { fprintf(stderr, "Invalid SHERPA_NCNN_METHOD=%s\n", val.c_str()); return -1; } config->decoder_config.method = val; } return 0; } // A simple display, without window support, doesn't rewrite current line. // It only output the new text, which only works in greedy_search mode. // It doesn't support modified_beam_search mode, which might change the // generated text. class SimpleDisplay : public sherpa_ncnn::Display { public: SimpleDisplay(std::string label) { label_ = label.empty() ? "" : label + ":"; } void Print(int32_t segment_id, const std::string &s) { if (last_segment_ != segment_id) { last_segment_ = segment_id; last_text_ = ""; if (segment_id) { fprintf(stderr, "\n"); } fprintf(stderr, "%s%d:", label_.c_str(), segment_id); if (!s.empty() && s.at(0) != ' ') { fprintf(stderr, " "); } } if (s.length() > last_text_.length()) { std::string tmp(s.begin() + last_text_.length(), s.end()); fprintf(stderr, "%s", tmp.c_str()); } else { fprintf(stderr, "%s", s.c_str()); } last_text_ = s; } private: std::string label_; std::string last_text_; int32_t last_segment_ = -1; }; std::unique_ptr CreateDisplay() { std::string val; SET_STRING_BY_ENV(val, "SHERPA_NCNN_SIMPLE_DISLAY"); std::transform(val.begin(), val.end(), val.begin(), [](auto c) { return std::tolower(c); }); if (val == "on" || val == "true") { std::string label; SET_STRING_BY_ENV(label, "SHERPA_NCNN_DISPLAY_LABEL"); return std::make_unique(label); } else { return std::make_unique(); } } int32_t main(int32_t argc, char **argv) { // Set the default values for config. sherpa_ncnn::RecognizerConfig config; SetDefaultConfigurations(&config); // Load and overwrite config from environment variables. std::string input_url; int32_t parsed_required_envs = ParseConfigFromENV(&config, &input_url); if (parsed_required_envs < 0) { exit(-1); } // Error if not set by neither environment variables nor CLI. if (parsed_required_envs < 8 && (argc < 9 || argc > 11)) { const char *usage = R"usage( Usage: ./bin/sherpa-ncnn-ffmpeg \ /path/to/tokens.txt \ /path/to/encoder.ncnn.param \ /path/to/encoder.ncnn.bin \ /path/to/decoder.ncnn.param \ /path/to/decoder.ncnn.bin \ /path/to/joiner.ncnn.param \ /path/to/joiner.ncnn.bin \ ffmpeg-input-url \ [num_threads] [decode_method, can be greedy_search/modified_beam_search] Or configure by environment variables: SHERPA_NCNN_TOKENS=/path/to/tokens.txt \ SHERPA_NCNN_ENCODER_PARAM=/path/to/encoder_jit_trace-pnnx.ncnn.param \ SHERPA_NCNN_ENCODER_BIN=/path/to/encoder_jit_trace-pnnx.ncnn.bin \ SHERPA_NCNN_DECODER_PARAM=/path/to/decoder_jit_trace-pnnx.ncnn.param \ SHERPA_NCNN_DECODER_BIN=/path/to/decoder_jit_trace-pnnx.ncnn.bin \ SHERPA_NCNN_JOINER_PARAM=/path/to/joiner_jit_trace-pnnx.ncnn.param \ SHERPA_NCNN_JOINER_BIN=/path/to/joiner_jit_trace-pnnx.ncnn.bin \ SHERPA_NCNN_INPUT_URL=ffmpeg-input-url \ SHERPA_NCNN_NUM_THREADS=4 \ SHERPA_NCNN_METHOD=greedy_search|modified_beam_search \ SHERPA_NCNN_ENABLE_ENDPOINT=on|off \ SHERPA_NCNN_RULE1_MIN_TRAILING_SILENCE=2.4 \ SHERPA_NCNN_RULE2_MIN_TRAILING_SILENCE=1.2 \ SHERPA_NCNN_RULE3_MIN_UTTERANCE_LENGTH=300 \ SHERPA_NCNN_SIMPLE_DISLAY=on|off \ SHERPA_NCNN_DISPLAY_LABEL=Data \ SHERPA_NCNN_ASD_ENDPOINTS=3 \ SHERPA_NCNN_ASD_SAMPLES=10 \ ./bin/sherpa-ncnn-ffmpeg Please refer to https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html for a list of pre-trained models to download. )usage"; fprintf(stderr, "%s\n", usage); fprintf(stderr, "argc, %d\n", argc); return -1; } signal(SIGINT, Handler); signal(SIGUSR1, Handler); // Overwrite the config by CLI. if (OverwriteConfigByCLI(argc, argv, &config, &input_url)) { exit(-1); } fprintf(stdout, "Event:K2: Config is %s\n", config.ToString().c_str()); fflush(stdout); sherpa_ncnn::Recognizer recognizer(config); auto s = recognizer.CreateStream(); fprintf(stdout, "Event:K2: Create recognizer ok\n"); fflush(stdout); // Initialize FFmpeg framework. auto ffmpeg_fmt_ctx = std::unique_ptr( avformat_alloc_context(), [](auto p) { avformat_close_input(&p); }); int32_t ret; fprintf(stdout, "Event:FFmpeg: Open input %s\n", input_url.c_str()); fflush(stdout); int32_t ffmpeg_audio_stream_index = -1; if ((ret = FFmpegOpenInputFile(ffmpeg_fmt_ctx.get(), input_url.c_str(), &ffmpeg_audio_stream_index)) < 0) { fprintf(stderr, "Open input file %s failed, ret=%d\n", input_url.c_str(), ret); exit(1); } fprintf(stdout, "Event:FFmpeg: Open input ok, %s\n", input_url.c_str()); fflush(stdout); // Create decoder context. AVStream *stream = ffmpeg_fmt_ctx->streams[ffmpeg_audio_stream_index]; // We should use dec to initialize the decoder context, because it uses // different flags set. const AVCodec *dec = avcodec_find_decoder(stream->codecpar->codec_id); auto ffmpeg_dec_ctx = std::unique_ptr( avcodec_alloc_context3(dec), [](auto p) { avcodec_free_context(&p); }); if ((ret = FFmpegOpenDecoder(ffmpeg_dec_ctx.get(), stream, dec)) < 0) { fprintf(stderr, "Open decoder failed, ret=%d\n", ret); exit(1); } auto ffmpeg_filter_graph = std::unique_ptr( avfilter_graph_alloc(), [](auto p) { avfilter_graph_free(&p); }); AVFilterContext *ffmpeg_buffersink_ctx; AVFilterContext *ffmpeg_buffersrc_ctx; static const char *ffmpeg_filter_descr = "aresample=16000,aformat=sample_fmts=s16:channel_layouts=mono"; if ((ret = FFmpegInitFilters(ffmpeg_dec_ctx.get(), ffmpeg_filter_graph.get(), &ffmpeg_buffersink_ctx, &ffmpeg_buffersrc_ctx, stream->time_base, ffmpeg_filter_descr)) < 0) { fprintf(stderr, "Init filters %s failed, ret=%d\n", ffmpeg_filter_descr, ret); exit(1); } int32_t asd_endpoints = 0, asd_samples = 0; SET_INTEGER_BY_ENV(asd_endpoints, "SHERPA_NCNN_ASD_ENDPOINTS"); SET_INTEGER_BY_ENV(asd_samples, "SHERPA_NCNN_ASD_SAMPLES"); auto packet = std::unique_ptr( av_packet_alloc(), [](auto p) { av_packet_free(&p); }); auto frame = std::unique_ptr( av_frame_alloc(), [](auto p) { av_frame_free(&p); }); auto filt_frame = std::unique_ptr( av_frame_alloc(), [](auto p) { av_frame_free(&p); }); if (packet == nullptr || frame == nullptr || filt_frame == nullptr) { fprintf(stderr, "Could not allocate frame or packet\n"); exit(1); } std::string last_text; int32_t segment_index = 0, zero_samples = 0, asd_segment = 0; std::unique_ptr display = CreateDisplay(); while (ret >= 0) { if ((ret = av_read_frame(ffmpeg_fmt_ctx.get(), packet.get())) < 0) { av_log(NULL, AV_LOG_ERROR, "Error reading frame ret=%d\n", ret); break; } // The packet must be freed with av_packet_unref() when it is no longer // needed. auto packet_unref = std::unique_ptr( packet.get(), [](auto p) { av_packet_unref(p); }); (void)packet_unref; // Reset the ASD(Active speaker detection) segment when stream unpublish. if (signal_unpublish_sigusr1) { signal_unpublish_sigusr1 = 0; if (asd_segment != segment_index) { asd_segment = segment_index; } } // ASD(Active speaker detection), note that 16000 samples is 1s. if (asd_samples && zero_samples > asd_samples * 16000) { // When unpublished, there might be some left samples in buffer. if (asd_endpoints && segment_index - asd_segment < asd_endpoints) { fprintf(stdout, "\nEvent:FFmpeg: Silence, incorrect microphone?\n"); fflush(stdout); } zero_samples = 0; } // Ignore packets except audio stream. if (packet->stream_index != ffmpeg_audio_stream_index) { continue; } ret = avcodec_send_packet(ffmpeg_dec_ctx.get(), packet.get()); if (ret < 0) { av_log(NULL, AV_LOG_ERROR, "Error feed decoder packet, ret=%d\n", ret); break; } while (ret >= 0) { ret = avcodec_receive_frame(ffmpeg_dec_ctx.get(), frame.get()); if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) { ret = 0; break; } else if (ret < 0) { av_log(NULL, AV_LOG_ERROR, "Error dec receive frame, ret=%d\n", ret); break; } // Always free the frame with av_frame_unref() when it is no longer // needed. auto frame_unref = std::unique_ptr( frame.get(), [](auto p) { av_frame_unref(p); }); (void)frame_unref; /* push the audio data from decoded frame into the filtergraph */ ret = av_buffersrc_add_frame_flags(ffmpeg_buffersrc_ctx, frame.get(), AV_BUFFERSRC_FLAG_KEEP_REF); if (ret < 0) { av_log(NULL, AV_LOG_ERROR, "Error filter feed frame, ret=%d\n", ret); break; } /* pull filtered audio from the filtergraph */ while (ret >= 0) { ret = av_buffersink_get_frame(ffmpeg_buffersink_ctx, filt_frame.get()); if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) { ret = 0; break; } if (ret < 0) { fprintf(stderr, "Error get frame, ret=%d\n", ret); break; } // The filt_frame is an allocated frame that will be filled with data. // The data must be freed using av_frame_unref() / av_frame_free() auto filt_frame_unref = std::unique_ptr( filt_frame.get(), [](auto p) { av_frame_unref(p); }); (void)filt_frame_unref; FFmpegOnDecodedFrame(filt_frame.get(), recognizer, s.get(), display.get(), &last_text, &segment_index, &zero_samples); } } } // Add some tail padding if (1) { float tail_paddings[4800] = {0}; // 0.3 seconds at 16 kHz sample rate s->AcceptWaveform(16000, tail_paddings, 4800); s->InputFinished(); while (recognizer.IsReady(s.get())) { recognizer.DecodeStream(s.get()); } auto text = recognizer.GetResult(s.get()).text; if (!text.empty() && last_text != text) { last_text = text; std::transform(text.begin(), text.end(), text.begin(), [](auto c) { return std::tolower(c); }); display->Print(segment_index, text); } } if (ret < 0 && ret != AVERROR_EOF) { fprintf(stderr, "Error occurred: %s\n", FFmpegAvError2String(ret)); exit(1); } return 0; }