#!/usr/bin/env bash if [ ! -d ./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13 ]; then echo "Please download the pre-trained model for testing." echo "You can refer to" echo "" echo "https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/zipformer-transucer-models.html#csukuangfj-sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13-bilingual-chinese-english" echo "" echo "for help" exit 1 fi go build ./decode-file \ --encoder-param ./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/encoder_jit_trace-pnnx.ncnn.param \ --encoder-bin ./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/encoder_jit_trace-pnnx.ncnn.bin \ --decoder-param ./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/decoder_jit_trace-pnnx.ncnn.param \ --decoder-bin ./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/decoder_jit_trace-pnnx.ncnn.bin \ --joiner-param ./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/joiner_jit_trace-pnnx.ncnn.param \ --joiner-bin ./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/joiner_jit_trace-pnnx.ncnn.bin \ --tokens ./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/tokens.txt \ ./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/test_wavs/1.wav