speech-recognition-from-microphone.py 2.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. #!/usr/bin/env python3
  2. # Real-time speech recognition from a microphone with sherpa-ncnn Python API
  3. #
  4. # Please refer to
  5. # https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html
  6. # to download pre-trained models
  7. import sys
  8. try:
  9. import sounddevice as sd
  10. except ImportError as e:
  11. print("Please install sounddevice first. You can use")
  12. print()
  13. print(" pip install sounddevice")
  14. print()
  15. print("to install it")
  16. sys.exit(-1)
  17. import sherpa_ncnn
  18. def create_recognizer():
  19. # Please replace the model files if needed.
  20. # See https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html
  21. # for download links.
  22. recognizer = sherpa_ncnn.Recognizer(
  23. tokens="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/tokens.txt",
  24. encoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.param",
  25. encoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.bin",
  26. decoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.param",
  27. decoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.bin",
  28. joiner_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.param",
  29. joiner_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.bin",
  30. num_threads=4,
  31. hotwords_file="",
  32. hotwords_score=1.5,
  33. )
  34. return recognizer
  35. def main():
  36. print("Started! Please speak")
  37. recognizer = create_recognizer()
  38. sample_rate = recognizer.sample_rate
  39. samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
  40. last_result = ""
  41. with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:
  42. while True:
  43. samples, _ = s.read(samples_per_read) # a blocking read
  44. samples = samples.reshape(-1)
  45. recognizer.accept_waveform(sample_rate, samples)
  46. result = recognizer.text
  47. if last_result != result:
  48. last_result = result
  49. print("\r{}".format(result), end="", flush=True)
  50. if __name__ == "__main__":
  51. devices = sd.query_devices()
  52. print(devices)
  53. default_input_device_idx = sd.default.device[0]
  54. print(f'Use default device: {devices[default_input_device_idx]["name"]}')
  55. try:
  56. main()
  57. except KeyboardInterrupt:
  58. print("\nCaught Ctrl + C. Exiting")