speech-recognition-from-microphone-with-endpoint-detection.py 2.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. #!/usr/bin/env python3
  2. # Real-time speech recognition from a microphone with sherpa-ncnn Python API
  3. # with endpoint detection.
  4. #
  5. # Please refer to
  6. # https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html
  7. # to download pre-trained models
  8. import sys
  9. try:
  10. import sounddevice as sd
  11. except ImportError as e:
  12. print("Please install sounddevice first. You can use")
  13. print()
  14. print(" pip install sounddevice")
  15. print()
  16. print("to install it")
  17. sys.exit(-1)
  18. import sherpa_ncnn
  19. def create_recognizer():
  20. # Please replace the model files if needed.
  21. # See https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html
  22. # for download links.
  23. recognizer = sherpa_ncnn.Recognizer(
  24. tokens="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/tokens.txt",
  25. encoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.param",
  26. encoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.bin",
  27. decoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.param",
  28. decoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.bin",
  29. joiner_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.param",
  30. joiner_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.bin",
  31. num_threads=4,
  32. decoding_method="modified_beam_search",
  33. enable_endpoint_detection=True,
  34. rule1_min_trailing_silence=2.4,
  35. rule2_min_trailing_silence=1.2,
  36. rule3_min_utterance_length=300,
  37. )
  38. return recognizer
  39. def main():
  40. print("Started! Please speak")
  41. recognizer = create_recognizer()
  42. sample_rate = recognizer.sample_rate
  43. samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
  44. last_result = ""
  45. segment_id = 0
  46. display = sherpa_ncnn.Display(max_word_per_line=30)
  47. with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:
  48. while True:
  49. samples, _ = s.read(samples_per_read) # a blocking read
  50. samples = samples.reshape(-1)
  51. recognizer.accept_waveform(sample_rate, samples)
  52. is_endpoint = recognizer.is_endpoint
  53. result = recognizer.text
  54. if result and (last_result != result):
  55. last_result = result
  56. display.print(segment_id, result)
  57. if is_endpoint:
  58. if result:
  59. segment_id += 1
  60. recognizer.reset()
  61. if __name__ == "__main__":
  62. devices = sd.query_devices()
  63. print(devices)
  64. default_input_device_idx = sd.default.device[0]
  65. print(f'Use default device: {devices[default_input_device_idx]["name"]}')
  66. try:
  67. main()
  68. except KeyboardInterrupt:
  69. print("\nCaught Ctrl + C. Exiting")