speech-recognition-from-microphone.py 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
  1. #!/usr/bin/env python3
  2. # Real-time speech recognition from a microphone with sherpa-ncnn Python API
  3. #
  4. # Please refer to
  5. # https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html
  6. # to download pre-trained models
  7. import sys
  8. try:
  9. import sounddevice as sd
  10. except ImportError as e:
  11. print("Please install sounddevice first. You can use")
  12. print()
  13. print(" pip install sounddevice")
  14. print()
  15. print("to install it")
  16. sys.exit(-1)
  17. import sherpa_ncnn
  18. def create_recognizer():
  19. # Please replace the model files if needed.
  20. # See https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html
  21. # for download links.
  22. recognizer = sherpa_ncnn.Recognizer(
  23. tokens="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/tokens.txt",
  24. encoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.param",
  25. encoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.bin",
  26. decoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.param",
  27. decoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.bin",
  28. joiner_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.param",
  29. joiner_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.bin",
  30. num_threads=4,
  31. )
  32. return recognizer
  33. def main():
  34. print("Started! Please speak")
  35. recognizer = create_recognizer()
  36. sample_rate = recognizer.sample_rate
  37. samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
  38. last_result = ""
  39. with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:
  40. while True:
  41. samples, _ = s.read(samples_per_read) # a blocking read
  42. samples = samples.reshape(-1)
  43. recognizer.accept_waveform(sample_rate, samples)
  44. result = recognizer.text
  45. if last_result != result:
  46. last_result = result
  47. print("\r{}".format(result), end="", flush=True)
  48. if __name__ == "__main__":
  49. devices = sd.query_devices()
  50. print(devices)
  51. default_input_device_idx = sd.default.device[0]
  52. print(f'Use default device: {devices[default_input_device_idx]["name"]}')
  53. try:
  54. main()
  55. except KeyboardInterrupt:
  56. print("\nCaught Ctrl + C. Exiting")