|
@@ -0,0 +1,184 @@
|
|
|
+(function(f) {
|
|
|
+ if (typeof exports === 'object' && typeof module !== 'undefined') {
|
|
|
+ module.exports = f();
|
|
|
+ } else if (typeof define === 'function' && define.amd) {
|
|
|
+ define([], f);
|
|
|
+ } else {
|
|
|
+ var g;
|
|
|
+ if (typeof window !== 'undefined') {
|
|
|
+ g = window;
|
|
|
+ } else if (typeof global !== 'undefined') {
|
|
|
+ g = global;
|
|
|
+ } else if (typeof self !== 'undefined') {
|
|
|
+ g = self;
|
|
|
+ } else {
|
|
|
+ g = this;
|
|
|
+ }
|
|
|
+ g.BezierEasing = f();
|
|
|
+ }
|
|
|
+})(function() {
|
|
|
+ var define, module, exports;
|
|
|
+ return (function() {
|
|
|
+ function r(e, n, t) {
|
|
|
+ function o(i, f) {
|
|
|
+ if (!n[i]) {
|
|
|
+ if (!e[i]) {
|
|
|
+ var c = 'function' == typeof require && require;
|
|
|
+ if (!f && c) return c(i, !0);
|
|
|
+ if (u) return u(i, !0);
|
|
|
+ var a = new Error("Cannot find module '" + i + "'");
|
|
|
+ throw ((a.code = 'MODULE_NOT_FOUND'), a);
|
|
|
+ }
|
|
|
+ var p = (n[i] = { exports: {} });
|
|
|
+ e[i][0].call(
|
|
|
+ p.exports,
|
|
|
+ function(r) {
|
|
|
+ var n = e[i][1][r];
|
|
|
+ return o(n || r);
|
|
|
+ },
|
|
|
+ p,
|
|
|
+ p.exports,
|
|
|
+ r,
|
|
|
+ e,
|
|
|
+ n,
|
|
|
+ t
|
|
|
+ );
|
|
|
+ }
|
|
|
+ return n[i].exports;
|
|
|
+ }
|
|
|
+ for (var u = 'function' == typeof require && require, i = 0; i < t.length; i++) o(t[i]);
|
|
|
+ return o;
|
|
|
+ }
|
|
|
+ return r;
|
|
|
+ })()(
|
|
|
+ {
|
|
|
+ 1: [
|
|
|
+ function(require, module, exports) {
|
|
|
+ /**
|
|
|
+ * https://github.com/gre/bezier-easing
|
|
|
+ * BezierEasing - use bezier curve for transition easing function
|
|
|
+ * by Gaëtan Renaudeau 2014 - 2015 – MIT License
|
|
|
+ */
|
|
|
+
|
|
|
+ // These values are established by empiricism with tests (tradeoff: performance VS precision)
|
|
|
+ var NEWTON_ITERATIONS = 4;
|
|
|
+ var NEWTON_MIN_SLOPE = 0.001;
|
|
|
+ var SUBDIVISION_PRECISION = 0.0000001;
|
|
|
+ var SUBDIVISION_MAX_ITERATIONS = 10;
|
|
|
+
|
|
|
+ var kSplineTableSize = 11;
|
|
|
+ var kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);
|
|
|
+
|
|
|
+ var float32ArraySupported = typeof Float32Array === 'function';
|
|
|
+
|
|
|
+ function A(aA1, aA2) {
|
|
|
+ return 1.0 - 3.0 * aA2 + 3.0 * aA1;
|
|
|
+ }
|
|
|
+ function B(aA1, aA2) {
|
|
|
+ return 3.0 * aA2 - 6.0 * aA1;
|
|
|
+ }
|
|
|
+ function C(aA1) {
|
|
|
+ return 3.0 * aA1;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.
|
|
|
+ function calcBezier(aT, aA1, aA2) {
|
|
|
+ return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2.
|
|
|
+ function getSlope(aT, aA1, aA2) {
|
|
|
+ return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
|
|
|
+ }
|
|
|
+
|
|
|
+ function binarySubdivide(aX, aA, aB, mX1, mX2) {
|
|
|
+ var currentX,
|
|
|
+ currentT,
|
|
|
+ i = 0;
|
|
|
+ do {
|
|
|
+ currentT = aA + (aB - aA) / 2.0;
|
|
|
+ currentX = calcBezier(currentT, mX1, mX2) - aX;
|
|
|
+ if (currentX > 0.0) {
|
|
|
+ aB = currentT;
|
|
|
+ } else {
|
|
|
+ aA = currentT;
|
|
|
+ }
|
|
|
+ } while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS);
|
|
|
+ return currentT;
|
|
|
+ }
|
|
|
+
|
|
|
+ function newtonRaphsonIterate(aX, aGuessT, mX1, mX2) {
|
|
|
+ for (var i = 0; i < NEWTON_ITERATIONS; ++i) {
|
|
|
+ var currentSlope = getSlope(aGuessT, mX1, mX2);
|
|
|
+ if (currentSlope === 0.0) {
|
|
|
+ return aGuessT;
|
|
|
+ }
|
|
|
+ var currentX = calcBezier(aGuessT, mX1, mX2) - aX;
|
|
|
+ aGuessT -= currentX / currentSlope;
|
|
|
+ }
|
|
|
+ return aGuessT;
|
|
|
+ }
|
|
|
+
|
|
|
+ function LinearEasing(x) {
|
|
|
+ return x;
|
|
|
+ }
|
|
|
+
|
|
|
+ module.exports = function bezier(mX1, mY1, mX2, mY2) {
|
|
|
+ if (!(0 <= mX1 && mX1 <= 1 && 0 <= mX2 && mX2 <= 1)) {
|
|
|
+ throw new Error('bezier x values must be in [0, 1] range');
|
|
|
+ }
|
|
|
+
|
|
|
+ if (mX1 === mY1 && mX2 === mY2) {
|
|
|
+ return LinearEasing;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Precompute samples table
|
|
|
+ var sampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize);
|
|
|
+ for (var i = 0; i < kSplineTableSize; ++i) {
|
|
|
+ sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
|
|
|
+ }
|
|
|
+
|
|
|
+ function getTForX(aX) {
|
|
|
+ var intervalStart = 0.0;
|
|
|
+ var currentSample = 1;
|
|
|
+ var lastSample = kSplineTableSize - 1;
|
|
|
+
|
|
|
+ for (; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample) {
|
|
|
+ intervalStart += kSampleStepSize;
|
|
|
+ }
|
|
|
+ --currentSample;
|
|
|
+
|
|
|
+ // Interpolate to provide an initial guess for t
|
|
|
+ var dist =
|
|
|
+ (aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]);
|
|
|
+ var guessForT = intervalStart + dist * kSampleStepSize;
|
|
|
+
|
|
|
+ var initialSlope = getSlope(guessForT, mX1, mX2);
|
|
|
+ if (initialSlope >= NEWTON_MIN_SLOPE) {
|
|
|
+ return newtonRaphsonIterate(aX, guessForT, mX1, mX2);
|
|
|
+ } else if (initialSlope === 0.0) {
|
|
|
+ return guessForT;
|
|
|
+ } else {
|
|
|
+ return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return function BezierEasing(x) {
|
|
|
+ // Because JavaScript number are imprecise, we should guarantee the extremes are right.
|
|
|
+ if (x === 0) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ if (x === 1) {
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ return calcBezier(getTForX(x), mY1, mY2);
|
|
|
+ };
|
|
|
+ };
|
|
|
+ },
|
|
|
+ {}
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {},
|
|
|
+ [1]
|
|
|
+ )(1);
|
|
|
+});
|