
The Trollbridge recipe is a pattern
for the highest degree of
operational security.

Features:
- render UI securely at bootstrap
- promise based message passing
- RW access to filesystem
- STDOUT access to other binaries
- extensible with Rust functions
- whitelist for functional codegen
- runtime message salting
- fASLR & dAoT Compiling

Best When:
- you are paranoid about security
but still need the power of Rust.

Pros:
- without a webserver, a whole
class of attacks on both the UI and
the server itself are mitigated out of
existence

Tauri Binary

Lock-down

2-
�
��

B�
��
��

Trollbridge

Case Study:
Cryptographic Enclave

In the semi-trusted environment of an application on a user-
device that communicates with the other computers over the
network, guaranteeing that the communication pathway is
isolated from high-value algorithms is an essential strategy for
the minimization of viable attack vectors.

The approach described here applies the generally accepted best
practice of "Security in Breadth". In the tradeoff between security
and performance, this Cryptographic Enclave prefers security.
Nevertheless, it is still quite performant and extensible.

In this study we show a method for building a safe interface to
Rust that is functionally isolated from the user interface and
applies several important techniques to make attacking this
interface virtually impossible:

dAoT
By using a dynamic Ahead of Time compiler, we are able to
generate code references that are unique for every session.

fASLR
We propose a functional address space layout randomization at
boot time and optionally after every execution. Using a UUID for
each critical function prevents static attacks.

OTP
Additionally, hashing important messages with OTP, we are
further able to encrypt messages between the UI and the Rust
backend.

Bridge
Instead of passing potentially unsafe functions, the bridge is used
to pass messages and commands to and from brokers. The
functionality is mapped to commands at each respective side of
the bridge.

The Enclave is an advanced Trollbridge pattern that uses modern PGP encryption and isolates
important key generation, validation and signing processes from the UI. It uses message passing
(light-blue arrows) to emit a salted and hashed password to the Rust process handler using a pre-
registered function that itself is referenced with a UID that is generated by the Rust broker at every
message that passes through the bridge.

As this Case Study is a high-level overview, the above flow describes a secure approach that can be
used for generating a new key-pair and writing/reading with a secondary layer of encryption. It
should be noted that message decryption is possible, but obviously only if the message has been
encrypted with the holder's private key. Furthermore, multi-party encryption and even message
signing are both trivial to implement and merely a matter of passing the right messages and
architecting the right flow.

@quasar/tauri - v1.0.0-alpha.0
https://github.com/quasarframework/tauri

������� ���

���������
�� ������:
��������
����� ���

BRIDGE
������

������� ���

���������
�� ���� ��
����������

Cryptographic Enclave

P����� K��, ��� S���

JS ������

E������ / D������

E�
��

P����
���

new:pgp:PBKDF2
regex for safety
create new key-pair with settings
encrypt keys with password
save keys to filesystem

share:pgp:publicKey
read keys from filesystem
decrypt private key with password
validate public key
pop salt from registry array
push new salt to registry array
send public key and salt to broker
destroy pointers

Bootstrap
fASLR at dAoT
before render

TauriTAURI
Create tiny, fast and secure cross-platform native apps with
the ease of VueJS and the power of the Quasar Framework

©2019 - Quasar Team Tauri, Licensed under MIT
Text and Graphics CC-BY-NC-ND Daniel Thompson-Yvetot


