
Development and Production Lifecycles

Lifecycle
This document seeks to provide visual and conceptual
insight into the flow of Tauri App development and
bundling. It assumes that all prerequisites for Tauri
development have been met (i.e. Node, Quasar, Rust etc.)
For the sake of brevity we have not detailed app
extensions, transpiling to the AST or linting in the diagram.

DEV
The process of constructing a development environment
begins with the Quasar CLI command: quasar dev
This command collects the config (CFG) and context
(CTX) and prepares the environment by sending the
transpiled source code through Babel and Webpack. Then
the Rust dependencies are built fresh (if never done
before) and devland code is compiled. A Webview is
constructed, the Webpack server connects to it and the
app is rendered and fully interactive.

HMR
When some part of the UI code changes, Chokidar will
alert Webpack to recreate chunks, which are then injected
into the receiving Webview. If Rust code changes, the
Webview will be destroyed and rebuilt.

BUILD
The build command will create a finished app (based upon
the configuration in quasar.conf.js). Node is used as a
part of the toolchain and is not shipped. Webpack bundles
the assets for production, Rust acquires and builds its
dependencies and then bundles for the target platform.

@quasar/tauri - v1.0.0-alpha.0
https://github.com/quasarframework/tauri

TauriTAURI
Create tiny, fast and secure cross-platform native apps with
the ease of VueJS and the power of the Quasar Framework

DEV

dev hook

CFG & CTX

scaffold env

devserver

build chunks

build host

spawn webview

render html

live Webview

HMR

rebuild chunks

rebuild host

detect change

render changes

reload

BUILD

build hook

bundle assets

CFG & CTX

scaffold env

build host

bundle app

©2019 - Quasar Team Tauri, Licensed under MIT
Text and Graphics CC-BY-NC-ND Daniel Thompson-Yvetot


