
dynamic Ahead of Time Compilation

This process of compilation happens several times during the build phase
of a Tauri app. By using a dynamic Ahead of Time compiler, you can
generate code references that are unique for every session and still
technically static code units.

dAoT

Content Security Policy Management

Preventing unauthorized code execution for websites has long since
been "resolved" by using CSPs. Tauri can inject CSPs into the index.html
of the user interface, and when using a localhost server it will also send
these headers to the UI or any other clients that connect with it.

CSP

functional Address Space Layout Randomization

fASLR techniques randomize function names at runtime and implement
optional OTP hashing so no two sessions are ever the same. We propose
a novel type of function naming at boot time and optionally after every
execution (KFI). Using a UID for each function prevents static attacks.

fASLR

Bundled Tauri Apps are true Binaries

This means that your apps cannot be easily decompiled as is the case
with Electron ASAR files, which makes the process of reverse engineering
your project much more time intensive and requires specialist training.

Binary Format

Post-Binary Analysis

Use industrial-grade pentester-tooling to discover and fix security
weaknesses in your final binaries - before you ship.

Tauri-Frida

One Time Pad Tokenization and Hashing

Hashing important messages with a OTP salt, you are able to encrypt
messages between the UI and the Rust backend.

OTP

Message Passing instead of serving via localhost

Instead of passing potentially unsafe functions, the bridge is used to
pass messages and commands to named brokers at each respective
side of the bridge. Most of the time you don't NEED a local server, and
its inclusion opens security gaps in the final application.

Bridge, don't Serve

Secure by Design
This guide seeks to explain the high level concepts and Security
Features at the core of Tauri's design that make you, your apps
and your users safer by default.

Please Note
While we take every opportunity to help you harden your
application - there are always underlying threats like BIOS attacks,
memory rowhammering and other operating system
vulnerabilities that are constantly being discovered and (in the
best cases) responsibly disclosed.

Furthermore, there are many ways that development teams can
cut corners and either leak sensitive information or leave doors
wide open to any of a range of attacks. Security is a never-ending
quest, and your users count on you to keep them safe.

Therefore, we highly recommend that you take some time to
consider the security ramifications of everything that your
application does, especially in the context of running on the semi-
hostile platform of end-user devices.

If you need help or want a review, you are welcome to contact the
Quasar team for security consultation.

Security Researchers
If you feel that there is a security concern or issue with anything
in Quasar or Tauri, please do not publicly comment on your
findings. Instead, reach out directly to our security team:

security@quasar.dev

Although we do not currently have a budget for Security Bounties,
in some cases we will consider rewarding responsible disclosure.

@quasar/tauri - v1.0.0-alpha.0
https://github.com/quasarframework/tauri

Realtime Security Auditing Made Easy

With the forthcoming AntiVuln integration, you will have realtime threat
notification and in-place patching for Node Modules and Rust Crates
optionally baked into your development and build workflows.

AntiVuln Integration

Shake Dangerous Functions out of the Codebase

You have the ability to pick and choose which API functions are available
to the UI and to Rust. If they are not enabled, the code will not be shipped
with your app, which reduces binary size and attack surface.

API Whitelisting

Kamikaze Function Injection

This advanced type of fASLR is a function (with randomized handle) that
Rust inserts at runtime into the Webview, where its interface is locked
within the promise resolution handler and is nulled after execution.

KFI

TauriTAURI
Create tiny, fast and secure cross-platform native apps with
the ease of VueJS and the power of the Quasar Framework

©2019 - Quasar Team Tauri, Licensed under MIT
Text and Graphics CC-BY-NC-ND Daniel Thompson-Yvetot


